Data-driven Activity Scheduler for Agent-based Mobility Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00328015" target="_blank" >RIV/68407700:21230/19:00328015 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.trc.2018.12.002" target="_blank" >https://doi.org/10.1016/j.trc.2018.12.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trc.2018.12.002" target="_blank" >10.1016/j.trc.2018.12.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven Activity Scheduler for Agent-based Mobility Models
Popis výsledku v původním jazyce
Activity-based modelling is a modern agent-based approach to travel demand modelling, in which the transport demand is derived from the agent’s needs to perform certain activities at specific places and times. The agent’s mobility is considered in a broader context, which allows the activity-based models to produce more realistic trip chains, compared to traditional trip-based models. The core of any activity-based model is an activity scheduler – a software component producing sequences of agent’s daily activities interconnected by trips, called activity schedules. Traditionally, activity schedulers used to rely heavily on hard-coded knowledge of transport behaviour experts. We introduce the concept of a Data-Driven Activity Scheduler (DDAS), which replaces numerous expert-designed components and their intricately engineered interactions with a collection of machine learning models. Its architecture is significantly simpler, making it easier to deploy and maintain. This shift towards data-driven, machine learning based approach is possible due to increased availability of mobility-related data. We demonstrate DDAS concept using our own proof-of-concept implementation, perform a rigorous analysis and compare the validity of the resulting model to one of the rule-based alternatives using the Validation Framework for Activity-Based Models (VALFRAM).
Název v anglickém jazyce
Data-driven Activity Scheduler for Agent-based Mobility Models
Popis výsledku anglicky
Activity-based modelling is a modern agent-based approach to travel demand modelling, in which the transport demand is derived from the agent’s needs to perform certain activities at specific places and times. The agent’s mobility is considered in a broader context, which allows the activity-based models to produce more realistic trip chains, compared to traditional trip-based models. The core of any activity-based model is an activity scheduler – a software component producing sequences of agent’s daily activities interconnected by trips, called activity schedules. Traditionally, activity schedulers used to rely heavily on hard-coded knowledge of transport behaviour experts. We introduce the concept of a Data-Driven Activity Scheduler (DDAS), which replaces numerous expert-designed components and their intricately engineered interactions with a collection of machine learning models. Its architecture is significantly simpler, making it easier to deploy and maintain. This shift towards data-driven, machine learning based approach is possible due to increased availability of mobility-related data. We demonstrate DDAS concept using our own proof-of-concept implementation, perform a rigorous analysis and compare the validity of the resulting model to one of the rule-based alternatives using the Validation Framework for Activity-Based Models (VALFRAM).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transportation Research Part C: Emerging Technologies
ISSN
0968-090X
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
370-390
Kód UT WoS článku
000457666200022
EID výsledku v databázi Scopus
2-s2.0-85058849317