Efficient Extraction of Network Event Types from NetFlows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00328141" target="_blank" >RIV/68407700:21230/19:00328141 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1155/2019/8954914" target="_blank" >https://doi.org/10.1155/2019/8954914</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1155/2019/8954914" target="_blank" >10.1155/2019/8954914</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Extraction of Network Event Types from NetFlows
Popis výsledku v původním jazyce
To perform sophisticated traffic analysis, such as intrusion detection, network monitoring tools firstly need to extract higher-level information from lower-level data by reconstructing events and activities from as primitive information as individual network packets or traffic flows. Aggregating communication data into meaningful entities is an open problem and existing, typically clustering-based, solutions are often highly suboptimal, producing results that may misinterpret the extracted information and consequently miss many network events. We propose a novel method for the extraction of various predefined types of network events from raw network flow data. The new method is based on analysis of computational properties of the event types as prescribed by their attributes in a given descriptive language. The corresponding events are then extracted with a supreme recall as compared to a respective event extraction part of an in-production intrusion detection system Camnep.
Název v anglickém jazyce
Efficient Extraction of Network Event Types from NetFlows
Popis výsledku anglicky
To perform sophisticated traffic analysis, such as intrusion detection, network monitoring tools firstly need to extract higher-level information from lower-level data by reconstructing events and activities from as primitive information as individual network packets or traffic flows. Aggregating communication data into meaningful entities is an open problem and existing, typically clustering-based, solutions are often highly suboptimal, producing results that may misinterpret the extracted information and consequently miss many network events. We propose a novel method for the extraction of various predefined types of network events from raw network flow data. The new method is based on analysis of computational properties of the event types as prescribed by their attributes in a given descriptive language. The corresponding events are then extracted with a supreme recall as compared to a respective event extraction part of an in-production intrusion detection system Camnep.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Security and Communication Networks
ISSN
1939-0114
e-ISSN
1939-0122
Svazek periodika
2019
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000459101500001
EID výsledku v databázi Scopus
2-s2.0-85062343255