Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Systém detekce intruzí založený na hardwarově akcelerované analýze síťových toků

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03151465" target="_blank" >RIV/68407700:21230/08:03151465 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/63839172:_____/08:00000961 RIV/00216224:14610/08:00042091

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flow Based Network Intrusion Detection System using Hardware-Accelerated NetFlow Probes

  • Popis výsledku v původním jazyce

    Current network intrusion detection methods based on anomaly detection approaches suffer from comparatively higher error rate and low performance. Proposed flow based network intrusion detection system addresses these issues by (i) using hardware-accelerated probes to collect unsampled NetFlow data from gigabit-speed network links and (ii) combining several anomaly detection algorithms by means of collective trust modeling, a multi-agent data fusion method. The data acquired on the network is preprocessed and passed to anomaly detection models to gather independent anomaly opinions for each flow. The anomaly data is passed to several trust models to aggregate the anomalies with past experience, and the flows are re-evaluated to obtain their trustfulness, which is further aggregated to detect malicious traffic. Experiments performed on-line on real campus network illustrate system suitability for real-time network surveillance.

  • Název v anglickém jazyce

    Flow Based Network Intrusion Detection System using Hardware-Accelerated NetFlow Probes

  • Popis výsledku anglicky

    Current network intrusion detection methods based on anomaly detection approaches suffer from comparatively higher error rate and low performance. Proposed flow based network intrusion detection system addresses these issues by (i) using hardware-accelerated probes to collect unsampled NetFlow data from gigabit-speed network links and (ii) combining several anomaly detection algorithms by means of collective trust modeling, a multi-agent data fusion method. The data acquired on the network is preprocessed and passed to anomaly detection models to gather independent anomaly opinions for each flow. The anomaly data is passed to several trust models to aggregate the anomalies with past experience, and the flows are re-evaluated to obtain their trustfulness, which is further aggregated to detect malicious traffic. Experiments performed on-line on real campus network illustrate system suitability for real-time network surveillance.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CESNET Conference 2008: Security, Middleware, and Virtualization - Glue of Future Networks

  • ISBN

    978-80-904173-0-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    CESNET

  • Místo vydání

    Praha

  • Místo konání akce

    Prague

  • Datum konání akce

    25. 9. 2008

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku