CAMNEP: Multistage Collective Network Behavior Analysis System with Hardware Accelerated NetFlow Probes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F09%3A00042453" target="_blank" >RIV/00216224:14610/09:00042453 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CAMNEP: Multistage Collective Network Behavior Analysis System with Hardware Accelerated NetFlow Probes
Popis výsledku v původním jazyce
Current network behavior analysis methods based on anomaly detection approaches suffer from comparatively higher error rate and low performance. We propose a framework system which addresses these issues by (i) using hardware-accelerated probes to collect unsampled NetFlow/IPFIX data from gigabit-speed network links and (ii) combining several anomaly detection algorithms by means of collective trust modeling, a multi-agent data fusion method. The data acquired on the network is preprocessed in the collector database and then passed to several anomaly detection methods to obtain several independent anomaly opinions for each flow. Each of these methods uses a distinct set of aggregate traffic features to determine the anomaly of each flow, which is determined by comparing the observed flows with a method-specific traffic prediction and/or a set of rules. The anomaly data is passed to several trust models to aggregate the current anomalies with past experience.
Název v anglickém jazyce
CAMNEP: Multistage Collective Network Behavior Analysis System with Hardware Accelerated NetFlow Probes
Popis výsledku anglicky
Current network behavior analysis methods based on anomaly detection approaches suffer from comparatively higher error rate and low performance. We propose a framework system which addresses these issues by (i) using hardware-accelerated probes to collect unsampled NetFlow/IPFIX data from gigabit-speed network links and (ii) combining several anomaly detection algorithms by means of collective trust modeling, a multi-agent data fusion method. The data acquired on the network is preprocessed in the collector database and then passed to several anomaly detection methods to obtain several independent anomaly opinions for each flow. Each of these methods uses a distinct set of aggregate traffic features to determine the anomaly of each flow, which is determined by comparing the observed flows with a method-specific traffic prediction and/or a set of rules. The anomaly data is passed to several trust models to aggregate the current anomalies with past experience.
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
—
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
—