Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CAMNEP: Multistage Collective Network Behavior Analysis System with Hardware Accelerated NetFlow Probes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F09%3A00042453" target="_blank" >RIV/00216224:14610/09:00042453 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CAMNEP: Multistage Collective Network Behavior Analysis System with Hardware Accelerated NetFlow Probes

  • Popis výsledku v původním jazyce

    Current network behavior analysis methods based on anomaly detection approaches suffer from comparatively higher error rate and low performance. We propose a framework system which addresses these issues by (i) using hardware-accelerated probes to collect unsampled NetFlow/IPFIX data from gigabit-speed network links and (ii) combining several anomaly detection algorithms by means of collective trust modeling, a multi-agent data fusion method. The data acquired on the network is preprocessed in the collector database and then passed to several anomaly detection methods to obtain several independent anomaly opinions for each flow. Each of these methods uses a distinct set of aggregate traffic features to determine the anomaly of each flow, which is determined by comparing the observed flows with a method-specific traffic prediction and/or a set of rules. The anomaly data is passed to several trust models to aggregate the current anomalies with past experience.

  • Název v anglickém jazyce

    CAMNEP: Multistage Collective Network Behavior Analysis System with Hardware Accelerated NetFlow Probes

  • Popis výsledku anglicky

    Current network behavior analysis methods based on anomaly detection approaches suffer from comparatively higher error rate and low performance. We propose a framework system which addresses these issues by (i) using hardware-accelerated probes to collect unsampled NetFlow/IPFIX data from gigabit-speed network links and (ii) combining several anomaly detection algorithms by means of collective trust modeling, a multi-agent data fusion method. The data acquired on the network is preprocessed in the collector database and then passed to several anomaly detection methods to obtain several independent anomaly opinions for each flow. Each of these methods uses a distinct set of aggregate traffic features to determine the anomaly of each flow, which is determined by comparing the observed flows with a method-specific traffic prediction and/or a set of rules. The anomaly data is passed to several trust models to aggregate the current anomalies with past experience.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

  • Místo vydání

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče