Maximum Gain, Effective Area, and Directivity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331165" target="_blank" >RIV/68407700:21230/19:00331165 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TAP.2019.2916760" target="_blank" >https://doi.org/10.1109/TAP.2019.2916760</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAP.2019.2916760" target="_blank" >10.1109/TAP.2019.2916760</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximum Gain, Effective Area, and Directivity
Popis výsledku v původním jazyce
Fundamental bounds on antenna gain are found via convex optimization of the current density in a prescribed region. Various constraints are considered, including self-resonance and only partial control of the current distribution. Derived formulas are valid for arbitrarily shaped radiators of a given conductivity. All the optimization tasks are reduced to eigenvalue problems, which are solved efficiently. The second part of the paper deals with superdirectivity and its associated minimal costs in efficiency and Q-factor. The paper is accompanied with a series of examples practically demonstrating the relevance of the theoretical framework and entirely spanning a wide range of material parameters and electrical sizes used in antenna technology. Presented results are analyzed from a perspective of effectively radiating modes. In contrast to a common approach utilizing spherical modes, the radiating modes of a given body are directly evaluated and analyzed here. All crucial mathematical steps are reviewed in the appendices, including a series of important subroutines to be considered making it possible to reduce the computational burden associated with the evaluation of electrically large structures and structures of high conductivity.
Název v anglickém jazyce
Maximum Gain, Effective Area, and Directivity
Popis výsledku anglicky
Fundamental bounds on antenna gain are found via convex optimization of the current density in a prescribed region. Various constraints are considered, including self-resonance and only partial control of the current distribution. Derived formulas are valid for arbitrarily shaped radiators of a given conductivity. All the optimization tasks are reduced to eigenvalue problems, which are solved efficiently. The second part of the paper deals with superdirectivity and its associated minimal costs in efficiency and Q-factor. The paper is accompanied with a series of examples practically demonstrating the relevance of the theoretical framework and entirely spanning a wide range of material parameters and electrical sizes used in antenna technology. Presented results are analyzed from a perspective of effectively radiating modes. In contrast to a common approach utilizing spherical modes, the radiating modes of a given body are directly evaluated and analyzed here. All crucial mathematical steps are reviewed in the appendices, including a series of important subroutines to be considered making it possible to reduce the computational burden associated with the evaluation of electrically large structures and structures of high conductivity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Antennas and Propagation
ISSN
0018-926X
e-ISSN
1558-2221
Svazek periodika
67
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
5282-5293
Kód UT WoS článku
000481479500016
EID výsledku v databázi Scopus
2-s2.0-85070596521