The Upper Bound on Antenna Gain and Its Feasibility as a Sum of Characteristic Gains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00374568" target="_blank" >RIV/68407700:21230/24:00374568 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TAP.2023.3323763" target="_blank" >https://doi.org/10.1109/TAP.2023.3323763</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAP.2023.3323763" target="_blank" >10.1109/TAP.2023.3323763</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Upper Bound on Antenna Gain and Its Feasibility as a Sum of Characteristic Gains
Popis výsledku v původním jazyce
The upper bound on antenna gain is expressed as a sum of lossy characteristic modes, specifically, as a sum of characteristic far fields squared. The procedure combines the favorable properties of Harrington’s classical approach to maximum directivity and current-density-based approaches. The upper bound is valid for any antenna or array designed in a given design region for which optimal performance is determined. The decomposition into modes makes it possible to study the degrees of freedom of an obstacle, classify its radiation into normal or super-directive currents, and determine their compatibility with a given excitation. The bound considers an arbitrary shape of the design region and specific material distribution. The cost in Q -factor and radiation efficiency is studied. The extra constraint of a self-resonance current is imposed for an electrically small antenna. The examples verify the developed theory, demonstrate the procedure’s utility, and provide helpful insight to antenna designers. The feasibility of the optimal gain is studied in detail on an example of endfire arrays using the aforementioned decomposition of optimal current density into lossy characteristic modes.
Název v anglickém jazyce
The Upper Bound on Antenna Gain and Its Feasibility as a Sum of Characteristic Gains
Popis výsledku anglicky
The upper bound on antenna gain is expressed as a sum of lossy characteristic modes, specifically, as a sum of characteristic far fields squared. The procedure combines the favorable properties of Harrington’s classical approach to maximum directivity and current-density-based approaches. The upper bound is valid for any antenna or array designed in a given design region for which optimal performance is determined. The decomposition into modes makes it possible to study the degrees of freedom of an obstacle, classify its radiation into normal or super-directive currents, and determine their compatibility with a given excitation. The bound considers an arbitrary shape of the design region and specific material distribution. The cost in Q -factor and radiation efficiency is studied. The extra constraint of a self-resonance current is imposed for an electrically small antenna. The examples verify the developed theory, demonstrate the procedure’s utility, and provide helpful insight to antenna designers. The feasibility of the optimal gain is studied in detail on an example of endfire arrays using the aforementioned decomposition of optimal current density into lossy characteristic modes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Antennas and Propagation
ISSN
0018-926X
e-ISSN
1558-2221
Svazek periodika
72
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
277-289
Kód UT WoS článku
001203470400002
EID výsledku v databázi Scopus
2-s2.0-85174843550