Compact Representation of Value Function in Partially Observable Stochastic Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332701" target="_blank" >RIV/68407700:21230/19:00332701 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ijcai.org/proceedings/2019/50" target="_blank" >https://www.ijcai.org/proceedings/2019/50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2019/50" target="_blank" >10.24963/ijcai.2019/50</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compact Representation of Value Function in Partially Observable Stochastic Games
Popis výsledku v původním jazyce
Value methods for solving stochastic games with partial observability model the uncertainty of the players as a probability distribution over possible states, where the dimension of the belief space is the number of states. For many practical problems, there are exponentially many states which causes scalability problems. We propose an abstraction technique that addresses this curse of dimensionality by projecting the high-dimensional beliefs onto characteristic vectors of significantly lower dimension (e.g., marginal probabilities). Our main contributions are (1) a novel compact representation of the uncertainty in partially observable stochastic games and (2) a novel algorithm using this representation that is based on existing state-of-the-art algorithms for solving stochastic games with partial observability. Experimental evaluation confirms that the new algorithm using the compact representation dramatically increases scalability compared to the state of the art.
Název v anglickém jazyce
Compact Representation of Value Function in Partially Observable Stochastic Games
Popis výsledku anglicky
Value methods for solving stochastic games with partial observability model the uncertainty of the players as a probability distribution over possible states, where the dimension of the belief space is the number of states. For many practical problems, there are exponentially many states which causes scalability problems. We propose an abstraction technique that addresses this curse of dimensionality by projecting the high-dimensional beliefs onto characteristic vectors of significantly lower dimension (e.g., marginal probabilities). Our main contributions are (1) a novel compact representation of the uncertainty in partially observable stochastic games and (2) a novel algorithm using this representation that is based on existing state-of-the-art algorithms for solving stochastic games with partial observability. Experimental evaluation confirms that the new algorithm using the compact representation dramatically increases scalability compared to the state of the art.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-24384Y" target="_blank" >GJ19-24384Y: Výpočet rovnovážných strategií v dynamických hrách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-4-1
ISSN
—
e-ISSN
1045-0823
Počet stran výsledku
7
Strana od-do
350-356
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Macau
Datum konání akce
10. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—