Generalized Eilenberg Theorem: Varieties of Languages in a Category
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332930" target="_blank" >RIV/68407700:21230/19:00332930 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3276771" target="_blank" >https://doi.org/10.1145/3276771</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3276771" target="_blank" >10.1145/3276771</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized Eilenberg Theorem: Varieties of Languages in a Category
Popis výsledku v původním jazyce
For finite automata as coalgebras in a category C, we study languages they accept and varieties of such languages. This generalizes Eilenberg's concept of a variety of languages, which corresponds to choosing as C the category of Boolean algebras. Eilenberg established a bijective correspondence between pseudovarieties of monoids and varieties of regular languages. In our generalization, we work with a pair C/D of locally finite varieties of algebras that are predual, i.e., dualize, on the level of finite algebras, and we prove that pseudovarieties D-monoids bijectively correspond to varieties of regular languages in C. As one instance, Eilenberg's result is recovered by choosing D = sets and C = Boolean algebras. Another instance, Pin's result on pseudovarieties of ordered monoids, is covered by taking D = posets and C = distributive lattices. By choosing as C = D the self-predual category of join-semilattices, we obtain Polak's result on pseudovarieties of idempotent semirings. Similarly, using the self-preduality of vector spaces over a finite field K, our result covers that of Reutenauer on pseudovarieties of K-algebras. Several new variants of Eilenberg's theorem arise by taking other predualities, e.g., between the categories of non-unital Boolean rings and of pointed sets. In each of these cases, we also prove a local variant of the bijection, where a fixed alphabet is assumed and one considers local varieties of regular languages over that alphabet in the category C.
Název v anglickém jazyce
Generalized Eilenberg Theorem: Varieties of Languages in a Category
Popis výsledku anglicky
For finite automata as coalgebras in a category C, we study languages they accept and varieties of such languages. This generalizes Eilenberg's concept of a variety of languages, which corresponds to choosing as C the category of Boolean algebras. Eilenberg established a bijective correspondence between pseudovarieties of monoids and varieties of regular languages. In our generalization, we work with a pair C/D of locally finite varieties of algebras that are predual, i.e., dualize, on the level of finite algebras, and we prove that pseudovarieties D-monoids bijectively correspond to varieties of regular languages in C. As one instance, Eilenberg's result is recovered by choosing D = sets and C = Boolean algebras. Another instance, Pin's result on pseudovarieties of ordered monoids, is covered by taking D = posets and C = distributive lattices. By choosing as C = D the self-predual category of join-semilattices, we obtain Polak's result on pseudovarieties of idempotent semirings. Similarly, using the self-preduality of vector spaces over a finite field K, our result covers that of Reutenauer on pseudovarieties of K-algebras. Several new variants of Eilenberg's theorem arise by taking other predualities, e.g., between the categories of non-unital Boolean rings and of pointed sets. In each of these cases, we also prove a local variant of the bijection, where a fixed alphabet is assumed and one considers local varieties of regular languages over that alphabet in the category C.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Computational Logic
ISSN
1529-3785
e-ISSN
1557-945X
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
47
Strana od-do
1-47
Kód UT WoS článku
000457990100003
EID výsledku v databázi Scopus
2-s2.0-85059578831