Deep Learning with Relational Logic Representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00333120" target="_blank" >RIV/68407700:21230/19:00333120 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ijcai.org/proceedings/2019/920" target="_blank" >https://www.ijcai.org/proceedings/2019/920</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2019/920" target="_blank" >10.24963/ijcai.2019/920</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning with Relational Logic Representations
Popis výsledku v původním jazyce
Despite their significant success, all the existing deep neural architectures based on static computational graphs processing fixed tensor representations necessarily face fundamental limitations when presented with dynamically sized and structured data. Examples of these are sparse multi-relational structures present everywhere from biological networks and complex knowledge hyper-graphs to logical theories. Likewise, given the cryptic nature of generalization and representation learning in neural networks, potential integration with the sheer amounts of existing symbolic abstractions present in human knowledge remains highly problematic. Here, we argue that these abilities, naturally present in symbolic approaches based on the expressive power of relational logic, are necessary to be adopted for further progress of neural networks, and present a well founded learning framework for integration of deep and symbolic approaches based on the lifted modelling paradigm.
Název v anglickém jazyce
Deep Learning with Relational Logic Representations
Popis výsledku anglicky
Despite their significant success, all the existing deep neural architectures based on static computational graphs processing fixed tensor representations necessarily face fundamental limitations when presented with dynamically sized and structured data. Examples of these are sparse multi-relational structures present everywhere from biological networks and complex knowledge hyper-graphs to logical theories. Likewise, given the cryptic nature of generalization and representation learning in neural networks, potential integration with the sheer amounts of existing symbolic abstractions present in human knowledge remains highly problematic. Here, we argue that these abilities, naturally present in symbolic approaches based on the expressive power of relational logic, are necessary to be adopted for further progress of neural networks, and present a well founded learning framework for integration of deep and symbolic approaches based on the lifted modelling paradigm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-26999S" target="_blank" >GA17-26999S: Hluboké relační učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
ISBN
978-0-9992411-4-1
ISSN
—
e-ISSN
1045-0823
Počet stran výsledku
2
Strana od-do
6462-6463
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Macau
Datum konání akce
10. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—