Query-By-Committee Framework Used for Semi-Automatic Sleep Stages Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335049" target="_blank" >RIV/68407700:21230/19:00335049 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/19:00335049
Výsledek na webu
<a href="https://www.mdpi.com/2504-3900/31/1/80" target="_blank" >https://www.mdpi.com/2504-3900/31/1/80</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/proceedings2019031080" target="_blank" >10.3390/proceedings2019031080</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Query-By-Committee Framework Used for Semi-Automatic Sleep Stages Classification
Popis výsledku v původním jazyce
Active learning is very useful for classification problems where it is hard or time-consuming to acquire classes of data in order to create a subset for training a classifier. The classification of over-night polysomnography records to sleep stages is an example of such application because an expert has to annotate a large number of segments of a record. Active learning methods enable us to iteratively select only the most informative instances for the manual classification so the total expert’s effort is reduced. However, the process is able to be insufficiently initialised because of a large dimensionality of polysomnography (PSG) data, so the fast convergence of active learning is at risk. In order to prevent this threat, we have proposed a variant of the query-by-committee active learning scenario which take into account all features of data so it is not necessary to reduce a feature space, but the process is quickly initialised. The proposed method is compared to random sampling and margin uncertainty sampling which is another well-known active learning method. It was shown that, during crucial first iteration of the process, the provided variant of query-by-committee acquired the best results among other strategies in most cases.
Název v anglickém jazyce
Query-By-Committee Framework Used for Semi-Automatic Sleep Stages Classification
Popis výsledku anglicky
Active learning is very useful for classification problems where it is hard or time-consuming to acquire classes of data in order to create a subset for training a classifier. The classification of over-night polysomnography records to sleep stages is an example of such application because an expert has to annotate a large number of segments of a record. Active learning methods enable us to iteratively select only the most informative instances for the manual classification so the total expert’s effort is reduced. However, the process is able to be insufficiently initialised because of a large dimensionality of polysomnography (PSG) data, so the fast convergence of active learning is at risk. In order to prevent this threat, we have proposed a variant of the query-by-committee active learning scenario which take into account all features of data so it is not necessary to reduce a feature space, but the process is quickly initialised. The proposed method is compared to random sampling and margin uncertainty sampling which is another well-known active learning method. It was shown that, during crucial first iteration of the process, the provided variant of query-by-committee acquired the best results among other strategies in most cases.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 13th International Conference on Ubiquitous Computing and Ambient Intelligence UCAmI 2019
ISBN
—
ISSN
2504-3900
e-ISSN
2504-3900
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
Multidisciplinary Digital Publishing Institute (MDPI AG)
Místo vydání
Basel
Místo konání akce
Toledo
Datum konání akce
2. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—