Audio data classification by means of new algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F13%3A00204936" target="_blank" >RIV/62156489:43110/13:00204936 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6613984" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6613984</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2013.6613984" target="_blank" >10.1109/TSP.2013.6613984</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Audio data classification by means of new algorithms
Popis výsledku v původním jazyce
This paper describes classification of sound recordings based on their audio features. This is useful for querying large datasets, searching for recordings with some desired content. We use musical recordings as well as birdsongs recordings, which usually have rich structure and contain a lot of patterns suitable for classification. We present two different classification methods, one for musical recordings and one for birdsongs. These methods are compared and their differences are discussed. We use feature vectors that capture the audio content of recording as a whole piece and then classify these feature vectors using combination of the Self-organizing map and the Learning Vector Quantization, which represent a powerful algorithm using unlabeled as well as labeled data. In case of birdsongs we use feature vectors representing time frames of a recording.
Název v anglickém jazyce
Audio data classification by means of new algorithms
Popis výsledku anglicky
This paper describes classification of sound recordings based on their audio features. This is useful for querying large datasets, searching for recordings with some desired content. We use musical recordings as well as birdsongs recordings, which usually have rich structure and contain a lot of patterns suitable for classification. We present two different classification methods, one for musical recordings and one for birdsongs. These methods are compared and their differences are discussed. We use feature vectors that capture the audio content of recording as a whole piece and then classify these feature vectors using combination of the Self-organizing map and the Learning Vector Quantization, which represent a powerful algorithm using unlabeled as well as labeled data. In case of birdsongs we use feature vectors representing time frames of a recording.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 36 th International Conference on Telecommunikations and Signal Processing
ISBN
978-1-4799-0404-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
507-511
Název nakladatele
TSP
Místo vydání
Rome, Italy
Místo konání akce
Rome, Italy
Datum konání akce
2. 7. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—