Boolean subalgebras of orthoalgebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335506" target="_blank" >RIV/68407700:21230/19:00335506 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11083-019-09483-6" target="_blank" >https://doi.org/10.1007/s11083-019-09483-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-019-09483-6" target="_blank" >10.1007/s11083-019-09483-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boolean subalgebras of orthoalgebras
Popis výsledku v původním jazyce
We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points.
Název v anglickém jazyce
Boolean subalgebras of orthoalgebras
Popis výsledku anglicky
We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
ISSN
0167-8094
e-ISSN
1572-9273
Svazek periodika
36
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
47
Strana od-do
563-609
Kód UT WoS článku
000509936700010
EID výsledku v databázi Scopus
2-s2.0-85062777699