Targeted Mismatch Adversarial Attack: Query With a Flower to Retrieve the Tower
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335540" target="_blank" >RIV/68407700:21230/19:00335540 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV.2019.00514" target="_blank" >https://doi.org/10.1109/ICCV.2019.00514</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2019.00514" target="_blank" >10.1109/ICCV.2019.00514</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Targeted Mismatch Adversarial Attack: Query With a Flower to Retrieve the Tower
Popis výsledku v původním jazyce
Access to online visual search engines implies sharing of private user content -- the query images. We introduce the concept of targeted mismatch attack for deep learning based retrieval systems to generate an adversarial image to conceal the query image. The generated image looks nothing like the user intended query, but leads to identical or very similar retrieval results. Transferring attacks to fully unseen networks is challenging. We show successful attacks to partially unknown systems, by designing various loss functions for the adversarial image construction. These include loss functions, for example, for unknown global pooling operation or unknown input resolution by the retrieval system. We evaluate the attacks on standard retrieval benchmarks and compare the results retrieved with the original and adversarial image.
Název v anglickém jazyce
Targeted Mismatch Adversarial Attack: Query With a Flower to Retrieve the Tower
Popis výsledku anglicky
Access to online visual search engines implies sharing of private user content -- the query images. We introduce the concept of targeted mismatch attack for deep learning based retrieval systems to generate an adversarial image to conceal the query image. The generated image looks nothing like the user intended query, but leads to identical or very similar retrieval results. Transferring attacks to fully unseen networks is challenging. We show successful attacks to partially unknown systems, by designing various loss functions for the adversarial image construction. These include loss functions, for example, for unknown global pooling operation or unknown input resolution by the retrieval system. We evaluate the attacks on standard retrieval benchmarks and compare the results retrieved with the original and adversarial image.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE International Conference on Computer Vision (ICCV 2019)
ISBN
978-1-7281-4803-8
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
10
Strana od-do
5036-5045
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Seoul
Datum konání akce
27. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—