No Fear of the Dark: Image Retrieval Under Varying Illumination Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335541" target="_blank" >RIV/68407700:21230/19:00335541 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV.2019.00979" target="_blank" >https://doi.org/10.1109/ICCV.2019.00979</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV.2019.00979" target="_blank" >10.1109/ICCV.2019.00979</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
No Fear of the Dark: Image Retrieval Under Varying Illumination Conditions
Popis výsledku v původním jazyce
Image retrieval under varying illumination conditions, such as day and night images, is addressed by image preprocessing, both hand-crafted and learned. Prior to extracting image descriptors by a convolutional neural network, images are photometrically normalised in order to reduce the descriptor sensitivity to illumination changes. We propose a learnable normalisation based on the U-Net architecture, which is trained on a combination of single-camera multi-exposure images and a newly constructed collection of similar views of landmarks during day and night. We experimentally show that both hand-crafted normalisation based on local histogram equalisation and the learnable normalisation outperform standard approaches in varying illumination conditions, while staying on par with the state-of-the-art methods on daylight illumination benchmarks, such as Oxford or Paris datasets.
Název v anglickém jazyce
No Fear of the Dark: Image Retrieval Under Varying Illumination Conditions
Popis výsledku anglicky
Image retrieval under varying illumination conditions, such as day and night images, is addressed by image preprocessing, both hand-crafted and learned. Prior to extracting image descriptors by a convolutional neural network, images are photometrically normalised in order to reduce the descriptor sensitivity to illumination changes. We propose a learnable normalisation based on the U-Net architecture, which is trained on a combination of single-camera multi-exposure images and a newly constructed collection of similar views of landmarks during day and night. We experimentally show that both hand-crafted normalisation based on local histogram equalisation and the learnable normalisation outperform standard approaches in varying illumination conditions, while staying on par with the state-of-the-art methods on daylight illumination benchmarks, such as Oxford or Paris datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-23165S" target="_blank" >GA19-23165S: Zobecněné vyhledávání obrázků a objevování relací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE International Conference on Computer Vision (ICCV 2019)
ISBN
978-1-7281-4803-8
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
9
Strana od-do
9695-9703
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Seoul
Datum konání akce
27. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—