Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sampling-based motion planning of 3D solid objects guided by multiple approximate solutions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335545" target="_blank" >RIV/68407700:21230/19:00335545 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/IROS40897.2019.8968578" target="_blank" >https://doi.org/10.1109/IROS40897.2019.8968578</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IROS40897.2019.8968578" target="_blank" >10.1109/IROS40897.2019.8968578</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sampling-based motion planning of 3D solid objects guided by multiple approximate solutions

  • Popis výsledku v původním jazyce

    Sampling-based motion planners are often used to solve motion planning problems for robots with many degrees of freedom. These planners explore the related configuration space by random sampling. The well-known issue of the sampling- based planners is the narrow passage problem. Narrow passages are small collision-free regions in the configuration space that are, due to their volume, difficult to cover by the random samples. The volume of the narrow passages can be artificially increased by reducing the size of the robot, e.g., by scaling-down its geometry, which increases the probability of placing the random samples into the narrow passages. This allows us to find an approximate solution (trajectory) and use it as a guide to find the solution for a larger robot. Guiding along an approximate solution may, however, fail if this solution leads through such parts of the configuration space that are not reachable or traversable by a larger robot. To improve this guiding process, we propose to compute several approximate solutions leading through different parts of the configuration space, and use all of them to guide the search for a larger robot. We introduce the concept of disabled regions that are prohibited from the exploration using the sampling process. The disabled regions are defined using trajectories already found in the space being searched. The proposed method can solve planning problems with narrow passages with higher success rate than other state-of-the-art planners.

  • Název v anglickém jazyce

    Sampling-based motion planning of 3D solid objects guided by multiple approximate solutions

  • Popis výsledku anglicky

    Sampling-based motion planners are often used to solve motion planning problems for robots with many degrees of freedom. These planners explore the related configuration space by random sampling. The well-known issue of the sampling- based planners is the narrow passage problem. Narrow passages are small collision-free regions in the configuration space that are, due to their volume, difficult to cover by the random samples. The volume of the narrow passages can be artificially increased by reducing the size of the robot, e.g., by scaling-down its geometry, which increases the probability of placing the random samples into the narrow passages. This allows us to find an approximate solution (trajectory) and use it as a guide to find the solution for a larger robot. Guiding along an approximate solution may, however, fail if this solution leads through such parts of the configuration space that are not reachable or traversable by a larger robot. To improve this guiding process, we propose to compute several approximate solutions leading through different parts of the configuration space, and use all of them to guide the search for a larger robot. We introduce the concept of disabled regions that are prohibited from the exploration using the sampling process. The disabled regions are defined using trajectories already found in the space being searched. The proposed method can solve planning problems with narrow passages with higher success rate than other state-of-the-art planners.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-22555Y" target="_blank" >GJ19-22555Y: Vzorkovací techniky plánování pohybu a akcí s využitím aproximačních řešení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

  • ISBN

    978-1-7281-4004-9

  • ISSN

    2153-0858

  • e-ISSN

    2153-0866

  • Počet stran výsledku

    8

  • Strana od-do

    1480-1487

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway, NJ

  • Místo konání akce

    Macau

  • Datum konání akce

    4. 11. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku