Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computing multiple guiding paths for sampling-based motion planning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335548" target="_blank" >RIV/68407700:21230/19:00335548 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14330/19:00107686

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICAR46387.2019.8981589" target="_blank" >http://dx.doi.org/10.1109/ICAR46387.2019.8981589</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICAR46387.2019.8981589" target="_blank" >10.1109/ICAR46387.2019.8981589</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computing multiple guiding paths for sampling-based motion planning

  • Popis výsledku v původním jazyce

    Path planning of 3D solid objects leads to search in a six-dimensional configuration space, which can be solved by sampling-based motion planning. The well-known issue of sampling-based planners is the narrow passage problem, which is caused by the presence of small regions of the configuration space that are difficult to cover by random samples. Guided-based planners cope with this issue by increasing the probability of sampling along an estimated solution (a guiding path). In the case of six-dimensional configuration space, the guiding path needs to be computed in the configuration space rather than in the workspace. Fast computation of guiding paths can be achieved by solving a similar, yet simpler problem, e.g., by reducing the size of the robot. This results in an approximate solution (path) that is assumed to be located near the solution of the original problem. The guided sampling along this approximate solution may, however, fail if the approximate solution is too far from the desired solution. In this paper, we cope with this problem by sampling the configuration space along multiple approximate solutions. The approximate solutions are computed using a proposed iterative process: after a path (solution) is found, it forms a region where the subsequent search is inhibited, which boosts the search of new solutions. The performance of the proposed approach is verified in scenarios with multiple narrow passages and compared with the state-of-the-art planners.

  • Název v anglickém jazyce

    Computing multiple guiding paths for sampling-based motion planning

  • Popis výsledku anglicky

    Path planning of 3D solid objects leads to search in a six-dimensional configuration space, which can be solved by sampling-based motion planning. The well-known issue of sampling-based planners is the narrow passage problem, which is caused by the presence of small regions of the configuration space that are difficult to cover by random samples. Guided-based planners cope with this issue by increasing the probability of sampling along an estimated solution (a guiding path). In the case of six-dimensional configuration space, the guiding path needs to be computed in the configuration space rather than in the workspace. Fast computation of guiding paths can be achieved by solving a similar, yet simpler problem, e.g., by reducing the size of the robot. This results in an approximate solution (path) that is assumed to be located near the solution of the original problem. The guided sampling along this approximate solution may, however, fail if the approximate solution is too far from the desired solution. In this paper, we cope with this problem by sampling the configuration space along multiple approximate solutions. The approximate solutions are computed using a proposed iterative process: after a path (solution) is found, it forms a region where the subsequent search is inhibited, which boosts the search of new solutions. The performance of the proposed approach is verified in scenarios with multiple narrow passages and compared with the state-of-the-art planners.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-07690S" target="_blank" >GA17-07690S: Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických proteinech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICAR2019: Proceedings of the 19th International Conference on Advanced Robotics

  • ISBN

    978-1-7281-2467-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    374-381

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway (New Jersey)

  • Místo konání akce

    Belo Horizonte

  • Datum konání akce

    2. 12. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku