Searching Multiple Approximate Solutions in Configuration Space to Guide Sampling-Based Motion Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342314" target="_blank" >RIV/68407700:21230/20:00342314 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/20:00116340
Výsledek na webu
<a href="https://doi.org/10.1007/s10846-020-01247-4" target="_blank" >https://doi.org/10.1007/s10846-020-01247-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10846-020-01247-4" target="_blank" >10.1007/s10846-020-01247-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Searching Multiple Approximate Solutions in Configuration Space to Guide Sampling-Based Motion Planning
Popis výsledku v původním jazyce
High-dimensional configuration space is usually searched using sampling-based motion planning methods. The well-known issue of sampling-based planners is the narrow passage problem caused by small regions of the configuration space that are difficult to cover by random samples. Practically, the presence of narrow passages decreases the probability of finding a solution, and to cope with it, the number of random samples has to be significantly increased, which also increases the planning time. By dilating the free space, e.g., by scaling-down or thinning the robot (or obstacles), narrow passages become wider, which allows us to compute an approximate solution. Then, the configuration space can be sampled densely around the approximate solution to find the solution of the original problem. However, this process may fail if the final solution is too far from the approximate one. In this paper, we propose a method to find multiple approximate solutions in the configuration space to increase the chance of finding the final solution. The approximate solutions are computed by repeated search of the configuration space while avoiding, if possible, the already discovered solutions. This enables us to search for distinct solutions leading through different parts of the configuration space. The number of approximate solutions is automatically determined based on their similarity. All approximate solutions are then used to guide the sampling of the configuration space. The performance of the proposed approach is verified in scenarios with multiple narrow passages and the benefits of the method are demonstrated by comparing the results with the state-of-the-art planners.
Název v anglickém jazyce
Searching Multiple Approximate Solutions in Configuration Space to Guide Sampling-Based Motion Planning
Popis výsledku anglicky
High-dimensional configuration space is usually searched using sampling-based motion planning methods. The well-known issue of sampling-based planners is the narrow passage problem caused by small regions of the configuration space that are difficult to cover by random samples. Practically, the presence of narrow passages decreases the probability of finding a solution, and to cope with it, the number of random samples has to be significantly increased, which also increases the planning time. By dilating the free space, e.g., by scaling-down or thinning the robot (or obstacles), narrow passages become wider, which allows us to compute an approximate solution. Then, the configuration space can be sampled densely around the approximate solution to find the solution of the original problem. However, this process may fail if the final solution is too far from the approximate one. In this paper, we propose a method to find multiple approximate solutions in the configuration space to increase the chance of finding the final solution. The approximate solutions are computed by repeated search of the configuration space while avoiding, if possible, the already discovered solutions. This enables us to search for distinct solutions leading through different parts of the configuration space. The number of approximate solutions is automatically determined based on their similarity. All approximate solutions are then used to guide the sampling of the configuration space. The performance of the proposed approach is verified in scenarios with multiple narrow passages and the benefits of the method are demonstrated by comparing the results with the state-of-the-art planners.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-22555Y" target="_blank" >GJ19-22555Y: Vzorkovací techniky plánování pohybu a akcí s využitím aproximačních řešení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent and Robotic Systems
ISSN
0921-0296
e-ISSN
1573-0409
Svazek periodika
100
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
1527-1543
Kód UT WoS článku
000564529000001
EID výsledku v databázi Scopus
2-s2.0-85090020216