Radial Distortion Triangulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335893" target="_blank" >RIV/68407700:21230/19:00335893 - isvavai.cz</a>
Výsledek na webu
<a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Kukelova_Radial_Distortion_Triangulation_CVPR_2019_paper.html" target="_blank" >http://openaccess.thecvf.com/content_CVPR_2019/html/Kukelova_Radial_Distortion_Triangulation_CVPR_2019_paper.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2019.00991" target="_blank" >10.1109/CVPR.2019.00991</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radial Distortion Triangulation
Popis výsledku v původním jazyce
This paper presents the first optimal, maximal likelihood, solution to the triangulation problem for radially distorted cameras. The proposed solution to the two-view triangulation problem minimizes the L2-norm of the reprojection error in the distorted image space. We cast the problem as the search for corrected distorted image points, and we use a Lagrange multiplier formulation to impose the epipolar constraint for undistorted points. For the one-parameter division model, this formulation leads to a system of five quartic polynomial equations in five unknowns, which can be exactly solved using the Groebner basis method. While the proposed Groebner basis solution is provably optimal; it is too slow for practical applications. Therefore, we developed a fast iterative solver to this problem. Extensive empirical tests show that the iterative algorithm delivers the optimal solution virtually every time, thus making it an L2-optimal algorithm de facto. It is iterative in nature, yet in practice, it converges in no more than five iterations. We thoroughly evaluate the proposed method on both synthetic and real-world data, and we show the benefits of performing the triangulation in the distorted space in the presence of radial distortion.
Název v anglickém jazyce
Radial Distortion Triangulation
Popis výsledku anglicky
This paper presents the first optimal, maximal likelihood, solution to the triangulation problem for radially distorted cameras. The proposed solution to the two-view triangulation problem minimizes the L2-norm of the reprojection error in the distorted image space. We cast the problem as the search for corrected distorted image points, and we use a Lagrange multiplier formulation to impose the epipolar constraint for undistorted points. For the one-parameter division model, this formulation leads to a system of five quartic polynomial equations in five unknowns, which can be exactly solved using the Groebner basis method. While the proposed Groebner basis solution is provably optimal; it is too slow for practical applications. Therefore, we developed a fast iterative solver to this problem. Extensive empirical tests show that the iterative algorithm delivers the optimal solution virtually every time, thus making it an L2-optimal algorithm de facto. It is iterative in nature, yet in practice, it converges in no more than five iterations. We thoroughly evaluate the proposed method on both synthetic and real-world data, and we show the benefits of performing the triangulation in the distorted space in the presence of radial distortion.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_050%2F0008025" target="_blank" >EF17_050/0008025: Mezinárodní mobility výzkumných pracovníků MSCA-IF na ČVUT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2019: Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-3293-8
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
9
Strana od-do
9673-9681
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Long Beach
Datum konání akce
15. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—