On Unsupervised Learning of Traversal Cost and Terrain Types Identification Using Self-organizing Maps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336164" target="_blank" >RIV/68407700:21230/19:00336164 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-30487-4_50" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30487-4_50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30487-4_50" target="_blank" >10.1007/978-3-030-30487-4_50</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Unsupervised Learning of Traversal Cost and Terrain Types Identification Using Self-organizing Maps
Popis výsledku v původním jazyce
This paper reports on the deployment of self-organizing maps in unsupervised learning of the traversal cost for a hexapod walking robot. The problem is motivated by traversability assessment of terrains not yet visited by the robot, but for which shape and appearance features are available. The perception system of the robot is used to extract terrain features that are accompanied by traversal cost characterization captured from the real experience of the robot with the terrain, which is characterized by proprioceptive features. The learned model is employed to predict the traversal cost of new terrains based only on the shape and appearance features. Based on the experimental deployment of the robot in various terrains, a dataset of the traversal cost has been collected that is utilized in the presented evaluation of the traversal cost modeling using self-organizing map approach. In comparison with the Gaussian process, the self-organizing map provides competitive results and the found paths using the predicted traversal costs are close to the optimal path based on reference traversal cost of the particular terrain types. Besides, the self-organizing map can also be utilized for unsupervised identification of the terrain types, and it further supports incremental learning, which is more suitable for practical deployments of the robot in a priory unknown environments where reference traversal costs are not available.
Název v anglickém jazyce
On Unsupervised Learning of Traversal Cost and Terrain Types Identification Using Self-organizing Maps
Popis výsledku anglicky
This paper reports on the deployment of self-organizing maps in unsupervised learning of the traversal cost for a hexapod walking robot. The problem is motivated by traversability assessment of terrains not yet visited by the robot, but for which shape and appearance features are available. The perception system of the robot is used to extract terrain features that are accompanied by traversal cost characterization captured from the real experience of the robot with the terrain, which is characterized by proprioceptive features. The learned model is employed to predict the traversal cost of new terrains based only on the shape and appearance features. Based on the experimental deployment of the robot in various terrains, a dataset of the traversal cost has been collected that is utilized in the presented evaluation of the traversal cost modeling using self-organizing map approach. In comparison with the Gaussian process, the self-organizing map provides competitive results and the found paths using the predicted traversal costs are close to the optimal path based on reference traversal cost of the particular terrain types. Besides, the self-organizing map can also be utilized for unsupervised identification of the terrain types, and it further supports incremental learning, which is more suitable for practical deployments of the robot in a priory unknown environments where reference traversal costs are not available.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019
ISBN
978-3-030-30486-7
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
654-668
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Munich
Datum konání akce
17. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—