Benchmarking Incremental Regressors in Traversal Cost Assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336157" target="_blank" >RIV/68407700:21230/19:00336157 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-30487-4_52" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30487-4_52</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-30487-4_52" target="_blank" >10.1007/978-3-030-30487-4_52</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking Incremental Regressors in Traversal Cost Assessment
Popis výsledku v původním jazyce
Motivated by the deployment of multi-legged walking robots in traversing various terrain types, we benchmark existing online and unsupervised incremental learning approaches in traversal cost prediction. The traversal cost is defined by the proprioceptive signal of the robot traversal stability that is combined with appearance and geometric properties of the traversed terrains to construct the traversal cost model incrementally. In the motivational deployment, such a model is instantaneously utilized to extrapolate the traversal cost for observed areas that have not yet been visited by the robot to avoid difficult terrains in motion planning. The examined approaches are Incremental Gaussian Mixture Network, Growing Neural Gas, Improved Self-Organizing Incremental Neural Network, Locally Weighted Projection Regression, and Bayesian Committee Machine with Gaussian Process Regressors. The performance is examined using a dataset of the various terrains traversed by a real hexapod walking robot. A part of the presented benchmarking is thus a description of the dataset and also a construction of the reference traversal cost model that is used for comparison of the evaluated regressors. The reference is designed as a compound Gaussian process-based model that is learned separately over the individual terrain types. Based on the evaluation results, the best performance among the examined regressors is provided by Incremental Gaussian Mixture Network, Improved Self-Organizing Incremental Neural Network, and Locally Weighted Projection Regression, while the latter two have the lower computational requirements.
Název v anglickém jazyce
Benchmarking Incremental Regressors in Traversal Cost Assessment
Popis výsledku anglicky
Motivated by the deployment of multi-legged walking robots in traversing various terrain types, we benchmark existing online and unsupervised incremental learning approaches in traversal cost prediction. The traversal cost is defined by the proprioceptive signal of the robot traversal stability that is combined with appearance and geometric properties of the traversed terrains to construct the traversal cost model incrementally. In the motivational deployment, such a model is instantaneously utilized to extrapolate the traversal cost for observed areas that have not yet been visited by the robot to avoid difficult terrains in motion planning. The examined approaches are Incremental Gaussian Mixture Network, Growing Neural Gas, Improved Self-Organizing Incremental Neural Network, Locally Weighted Projection Regression, and Bayesian Committee Machine with Gaussian Process Regressors. The performance is examined using a dataset of the various terrains traversed by a real hexapod walking robot. A part of the presented benchmarking is thus a description of the dataset and also a construction of the reference traversal cost model that is used for comparison of the evaluated regressors. The reference is designed as a compound Gaussian process-based model that is learned separately over the individual terrain types. Based on the evaluation results, the best performance among the examined regressors is provided by Incremental Gaussian Mixture Network, Improved Self-Organizing Incremental Neural Network, and Locally Weighted Projection Regression, while the latter two have the lower computational requirements.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18858S" target="_blank" >GA18-18858S: Metody kontinuálního učení řízení pohybu vícenohých kráčejích robotů v úlohách autonomního sběru dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019
ISBN
978-3-030-30486-7
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
685-697
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Munich
Datum konání akce
17. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—