Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Benchmarking Incremental Regressors in Traversal Cost Assessment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336157" target="_blank" >RIV/68407700:21230/19:00336157 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-30487-4_52" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-30487-4_52</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-30487-4_52" target="_blank" >10.1007/978-3-030-30487-4_52</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Benchmarking Incremental Regressors in Traversal Cost Assessment

  • Popis výsledku v původním jazyce

    Motivated by the deployment of multi-legged walking robots in traversing various terrain types, we benchmark existing online and unsupervised incremental learning approaches in traversal cost prediction. The traversal cost is defined by the proprioceptive signal of the robot traversal stability that is combined with appearance and geometric properties of the traversed terrains to construct the traversal cost model incrementally. In the motivational deployment, such a model is instantaneously utilized to extrapolate the traversal cost for observed areas that have not yet been visited by the robot to avoid difficult terrains in motion planning. The examined approaches are Incremental Gaussian Mixture Network, Growing Neural Gas, Improved Self-Organizing Incremental Neural Network, Locally Weighted Projection Regression, and Bayesian Committee Machine with Gaussian Process Regressors. The performance is examined using a dataset of the various terrains traversed by a real hexapod walking robot. A part of the presented benchmarking is thus a description of the dataset and also a construction of the reference traversal cost model that is used for comparison of the evaluated regressors. The reference is designed as a compound Gaussian process-based model that is learned separately over the individual terrain types. Based on the evaluation results, the best performance among the examined regressors is provided by Incremental Gaussian Mixture Network, Improved Self-Organizing Incremental Neural Network, and Locally Weighted Projection Regression, while the latter two have the lower computational requirements.

  • Název v anglickém jazyce

    Benchmarking Incremental Regressors in Traversal Cost Assessment

  • Popis výsledku anglicky

    Motivated by the deployment of multi-legged walking robots in traversing various terrain types, we benchmark existing online and unsupervised incremental learning approaches in traversal cost prediction. The traversal cost is defined by the proprioceptive signal of the robot traversal stability that is combined with appearance and geometric properties of the traversed terrains to construct the traversal cost model incrementally. In the motivational deployment, such a model is instantaneously utilized to extrapolate the traversal cost for observed areas that have not yet been visited by the robot to avoid difficult terrains in motion planning. The examined approaches are Incremental Gaussian Mixture Network, Growing Neural Gas, Improved Self-Organizing Incremental Neural Network, Locally Weighted Projection Regression, and Bayesian Committee Machine with Gaussian Process Regressors. The performance is examined using a dataset of the various terrains traversed by a real hexapod walking robot. A part of the presented benchmarking is thus a description of the dataset and also a construction of the reference traversal cost model that is used for comparison of the evaluated regressors. The reference is designed as a compound Gaussian process-based model that is learned separately over the individual terrain types. Based on the evaluation results, the best performance among the examined regressors is provided by Incremental Gaussian Mixture Network, Improved Self-Organizing Incremental Neural Network, and Locally Weighted Projection Regression, while the latter two have the lower computational requirements.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18858S" target="_blank" >GA18-18858S: Metody kontinuálního učení řízení pohybu vícenohých kráčejích robotů v úlohách autonomního sběru dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019

  • ISBN

    978-3-030-30486-7

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    685-697

  • Název nakladatele

    Springer

  • Místo vydání

    Basel

  • Místo konání akce

    Munich

  • Datum konání akce

    17. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku