Incremental Traversability Assessment Learning Using Growing Neural Gas Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332831" target="_blank" >RIV/68407700:21230/19:00332831 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-19642-4_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19642-4_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19642-4_17" target="_blank" >10.1007/978-3-030-19642-4_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incremental Traversability Assessment Learning Using Growing Neural Gas Algorithm
Popis výsledku v původním jazyce
In this paper, we report early results on the deployment of the growing neural gas algorithm in online incremental learning of traversability assessment with a multi-legged walking robot. The addressed problem is to incrementally build a model of the robot experience with traversing the terrain that can be immediately utilized in the traversability cost assessment of seen but not yet visited areas. The main motivation of the studied deployment is to improve the performance of the autonomous mission by avoiding hard to traverse areas and support planning cost-efficient paths based on the continuously collected measurements characterizing the operational environment. We propose to employ the growing neural gas algorithm to incrementally build a model of the terrain characterization from exteroceptive features that are associated with the proprioceptive based estimation of the traversal cost. Based on the reported results, the proposed deployment provides competitive results to the existing approach based on the Incremental Gaussian Mixture Network.
Název v anglickém jazyce
Incremental Traversability Assessment Learning Using Growing Neural Gas Algorithm
Popis výsledku anglicky
In this paper, we report early results on the deployment of the growing neural gas algorithm in online incremental learning of traversability assessment with a multi-legged walking robot. The addressed problem is to incrementally build a model of the robot experience with traversing the terrain that can be immediately utilized in the traversability cost assessment of seen but not yet visited areas. The main motivation of the studied deployment is to improve the performance of the autonomous mission by avoiding hard to traverse areas and support planning cost-efficient paths based on the continuously collected measurements characterizing the operational environment. We propose to employ the growing neural gas algorithm to incrementally build a model of the terrain characterization from exteroceptive features that are associated with the proprioceptive based estimation of the traversal cost. Based on the reported results, the proposed deployment provides competitive results to the existing approach based on the Incremental Gaussian Mixture Network.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
ISBN
978-3-030-19641-7
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
166-176
Název nakladatele
Springer-VDI-Verlag
Místo vydání
Düsseldorf
Místo konání akce
Barcelona
Datum konání akce
26. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—