Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reaching development through visuo-proprioceptive-tactile integration on a humanoid robot - A deep learning approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336243" target="_blank" >RIV/68407700:21230/19:00336243 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/DEVLRN.2019.8850681" target="_blank" >http://dx.doi.org/10.1109/DEVLRN.2019.8850681</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/DEVLRN.2019.8850681" target="_blank" >10.1109/DEVLRN.2019.8850681</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reaching development through visuo-proprioceptive-tactile integration on a humanoid robot - A deep learning approach

  • Popis výsledku v původním jazyce

    The development of reaching in infants has been studied for nearly nine decades. Originally, it was thought that early reaching is visually guided, but more recent evidence is suggestive of 'visually elicited' reaching, i.e. infant is gazing at the object rather than its hand during the reaching movement. The importance of haptic feedback has also been emphasized. Inspired by these findings, in this work we use the simulated iCub humanoid robot to construct a model of reaching development. The robot is presented with different objects, gazes at them, and performs motor babbling with one of its arms. Successful contacts with the object are detected through tactile sensors on hand and forearm. Such events serve as the training set, constituted by images from the robot's two eyes, head joints, tactile activation, and arm joints. A deep neural network is trained with images and head joints as inputs and arm configuration and touch as output. After learning, the network can successfully infer arm configurations that would result in a successful reach, together with prediction of tactile activation (i.e. which body part would make contact). Our main contribution is twofold: (i) our pipeline is end-to-end from stereo images and head joints (6 DoF) to armtorso configurations (10 DoF) and tactile activations, without any preprocessing, explicit coordinate transformations etc.; (ii) unique to this approach, reaches with multiple effectors corresponding to different regions of the sensitive skin are possible.

  • Název v anglickém jazyce

    Reaching development through visuo-proprioceptive-tactile integration on a humanoid robot - A deep learning approach

  • Popis výsledku anglicky

    The development of reaching in infants has been studied for nearly nine decades. Originally, it was thought that early reaching is visually guided, but more recent evidence is suggestive of 'visually elicited' reaching, i.e. infant is gazing at the object rather than its hand during the reaching movement. The importance of haptic feedback has also been emphasized. Inspired by these findings, in this work we use the simulated iCub humanoid robot to construct a model of reaching development. The robot is presented with different objects, gazes at them, and performs motor babbling with one of its arms. Successful contacts with the object are detected through tactile sensors on hand and forearm. Such events serve as the training set, constituted by images from the robot's two eyes, head joints, tactile activation, and arm joints. A deep neural network is trained with images and head joints as inputs and arm configuration and touch as output. After learning, the network can successfully infer arm configurations that would result in a successful reach, together with prediction of tactile activation (i.e. which body part would make contact). Our main contribution is twofold: (i) our pipeline is end-to-end from stereo images and head joints (6 DoF) to armtorso configurations (10 DoF) and tactile activations, without any preprocessing, explicit coordinate transformations etc.; (ii) unique to this approach, reaches with multiple effectors corresponding to different regions of the sensitive skin are possible.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    50103 - Cognitive sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ17-15697Y" target="_blank" >GJ17-15697Y: Automatická kalibrace robotů a bezpečná fyzická interakce s člověkem inspirovaná reprezentacemi těla v mozku primátů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)

  • ISBN

    978-1-5386-8128-2

  • ISSN

    2161-9484

  • e-ISSN

    2161-9484

  • Počet stran výsledku

    8

  • Strana od-do

    163-170

  • Název nakladatele

    IEEE

  • Místo vydání

    Anchorage, Alaska

  • Místo konání akce

    Oslo

  • Datum konání akce

    19. 8. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku