Collision Preventing Phase-Progress Control for Velocity Adaptation in Human-Robot Collaboration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336417" target="_blank" >RIV/68407700:21230/19:00336417 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/Humanoids43949.2019.9035065" target="_blank" >https://doi.org/10.1109/Humanoids43949.2019.9035065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Humanoids43949.2019.9035065" target="_blank" >10.1109/Humanoids43949.2019.9035065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collision Preventing Phase-Progress Control for Velocity Adaptation in Human-Robot Collaboration
Popis výsledku v původním jazyce
As robots are leaving dedicated areas on the factory floor and start to share workspaces with humans, safety of such collaboration becomes a major challenge. In this work, we propose new approaches to robot velocity modulation: while the robot is on a path prescribed by the task, it predicts possible collisions with the human and gradually slows down, proportionally to the danger of collision. Two principal approaches are developed—Impulse Orb and Prognosis Window—that dynamically determine the possible robot-induced collisions and apply a novel velocity modulating approach, in which the phase progress of the robot trajectory is modulated while the desired robot path remains intact. The methods guarantee that the robot will halt before contacting the human, but they are less conservative and more flexible than solutions using reduced speed and complete stop only, thereby increasing the effectiveness of human-robot collaboration. This approach is especially useful in constrained setups where the robot path is prescribed. Speed modulation is smooth and does not lead to abrupt motions, making the behavior of the robot also better understandable for the human counterpart. The two principal methods under different parameter settings are experimentally validated in a human-robot interaction scenario with the Franka Emika Panda robot, an external RGB-D camera, and human keypoint detection using OpenPose.
Název v anglickém jazyce
Collision Preventing Phase-Progress Control for Velocity Adaptation in Human-Robot Collaboration
Popis výsledku anglicky
As robots are leaving dedicated areas on the factory floor and start to share workspaces with humans, safety of such collaboration becomes a major challenge. In this work, we propose new approaches to robot velocity modulation: while the robot is on a path prescribed by the task, it predicts possible collisions with the human and gradually slows down, proportionally to the danger of collision. Two principal approaches are developed—Impulse Orb and Prognosis Window—that dynamically determine the possible robot-induced collisions and apply a novel velocity modulating approach, in which the phase progress of the robot trajectory is modulated while the desired robot path remains intact. The methods guarantee that the robot will halt before contacting the human, but they are less conservative and more flexible than solutions using reduced speed and complete stop only, thereby increasing the effectiveness of human-robot collaboration. This approach is especially useful in constrained setups where the robot path is prescribed. Speed modulation is smooth and does not lead to abrupt motions, making the behavior of the robot also better understandable for the human counterpart. The two principal methods under different parameter settings are experimentally validated in a human-robot interaction scenario with the Franka Emika Panda robot, an external RGB-D camera, and human keypoint detection using OpenPose.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
ISBN
978-1-5386-7629-5
ISSN
2164-0572
e-ISSN
2164-0580
Počet stran výsledku
8
Strana od-do
266-273
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Toronto
Datum konání akce
15. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—