A General Approach to Distributed and Privacy-Preserving Heuristic Computation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336495" target="_blank" >RIV/68407700:21230/19:00336495 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-37494-5_4" target="_blank" >https://doi.org/10.1007/978-3-030-37494-5_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-37494-5_4" target="_blank" >10.1007/978-3-030-37494-5_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A General Approach to Distributed and Privacy-Preserving Heuristic Computation
Popis výsledku v původním jazyce
Multi-agent planning (MAP) has recently gained traction in both planning and multi-agent system communities, especially with the focus on privacy-preserving multi-agent planning, where multiple agents plan for a common goal but with private information they do not want to disclose. Heuristic search is the dominant technique used in MAP and therefore it is not surprising that a significant attention has been paid to distributed heuristic computation, either with or without the concern for privacy. Nevertheless, most of the distributed heuristic computation approaches published so far are ad-hoc algorithms tailored for the particular heuristic. In this work we present a general, privacy-preserving, and admissible approach to distributed heuristic computation. Our approach is based on an adaptation of the technique of cost partitioning which has been successfully applied in optimal classical planning. We present the general approach, a particular implementation, and an experimental evaluation showing that the presented approach is competitive with the state of the art while having the additional benefits of generality and privacy preservation.
Název v anglickém jazyce
A General Approach to Distributed and Privacy-Preserving Heuristic Computation
Popis výsledku anglicky
Multi-agent planning (MAP) has recently gained traction in both planning and multi-agent system communities, especially with the focus on privacy-preserving multi-agent planning, where multiple agents plan for a common goal but with private information they do not want to disclose. Heuristic search is the dominant technique used in MAP and therefore it is not surprising that a significant attention has been paid to distributed heuristic computation, either with or without the concern for privacy. Nevertheless, most of the distributed heuristic computation approaches published so far are ad-hoc algorithms tailored for the particular heuristic. In this work we present a general, privacy-preserving, and admissible approach to distributed heuristic computation. Our approach is based on an adaptation of the technique of cost partitioning which has been successfully applied in optimal classical planning. We present the general approach, a particular implementation, and an experimental evaluation showing that the presented approach is competitive with the state of the art while having the additional benefits of generality and privacy preservation.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Agent and Artificial Intelligence - 11th International Conference, ICAART 2019
ISBN
978-3-030-37493-8
Počet stran výsledku
17
Strana od-do
55-71
Počet stran knihy
363
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—