Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337388" target="_blank" >RIV/68407700:21230/19:00337388 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ICCV.2019.00388" target="_blank" >https://doi.org/10.1109/ICCV.2019.00388</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV.2019.00388" target="_blank" >10.1109/ICCV.2019.00388</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm

  • Popis výsledku v původním jazyce

    The Progressive-X algorithm, Prog-X in short, is proposed for geometric multi-model fitting. The method interleaves sampling and consolidation of the current data interpretation via repetitive hypothesis proposal, fast rejection, and integration of the new hypothesis into the kept instance set by labeling energy minimization. Due to exploring the data progressively, the method has several beneficial properties compared with the state-of-the-art. First, a clear criterion, adopted from RANSAC, controls the termination and stops the algorithm when the probability of finding a new model with a reasonable number of inliers falls below a threshold. Second, Prog-X is an any-time algorithm. Thus, whenever is interrupted, e.g. due to a time limit, the returned instances cover real and, likely, the most dominant ones. The method is superior to the state-of-the-art in terms of accuracy in both synthetic experiments and on publicly available real-world datasets for homography, two-view motion, and motion segmentation.

  • Název v anglickém jazyce

    Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm

  • Popis výsledku anglicky

    The Progressive-X algorithm, Prog-X in short, is proposed for geometric multi-model fitting. The method interleaves sampling and consolidation of the current data interpretation via repetitive hypothesis proposal, fast rejection, and integration of the new hypothesis into the kept instance set by labeling energy minimization. Due to exploring the data progressively, the method has several beneficial properties compared with the state-of-the-art. First, a clear criterion, adopted from RANSAC, controls the termination and stops the algorithm when the probability of finding a new model with a reasonable number of inliers falls below a threshold. Second, Prog-X is an any-time algorithm. Thus, whenever is interrupted, e.g. due to a time limit, the returned instances cover real and, likely, the most dominant ones. The method is superior to the state-of-the-art in terms of accuracy in both synthetic experiments and on publicly available real-world datasets for homography, two-view motion, and motion segmentation.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2019 IEEE International Conference on Computer Vision (ICCV 2019)

  • ISBN

    978-1-7281-4804-5

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Počet stran výsledku

    9

  • Strana od-do

    3779-3787

  • Název nakladatele

    IEEE Computer Society Press

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Seoul

  • Datum konání akce

    27. 10. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku