Finding Geometric Models by Clustering in the Consensus Space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00371780" target="_blank" >RIV/68407700:21230/23:00371780 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR52729.2023.00524" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.00524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR52729.2023.00524" target="_blank" >10.1109/CVPR52729.2023.00524</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding Geometric Models by Clustering in the Consensus Space
Popis výsledku v původním jazyce
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies. The problem is formalized as finding dominant model instances progressively without forming crisp point-to-model assignments. Dominant instances are found via a RANSAC-like sampling and a consolidation process driven by a model quality function considering previously proposed instances. New ones are found by clustering in the consensus space. This new formulation leads to a simple iterative algorithm with state-of-the-art accuracy while running in real-time on a number of vision problems - at least two orders of magnitude faster than the competitors on two-view motion estimation. Also, we propose a deterministic sampler reflecting the fact that real-world data tend to form spatially coherent structures. The sampler returns connected components in a progressively densified neighborhood-graph. We present a number of applications where the use of multiple geometric models improves accuracy. These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects; and we also propose a way of using multiple homographies in global SfM algorithms. Source code: https://github.com/danini/clustering-in-consensus-space.
Název v anglickém jazyce
Finding Geometric Models by Clustering in the Consensus Space
Popis výsledku anglicky
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies. The problem is formalized as finding dominant model instances progressively without forming crisp point-to-model assignments. Dominant instances are found via a RANSAC-like sampling and a consolidation process driven by a model quality function considering previously proposed instances. New ones are found by clustering in the consensus space. This new formulation leads to a simple iterative algorithm with state-of-the-art accuracy while running in real-time on a number of vision problems - at least two orders of magnitude faster than the competitors on two-view motion estimation. Also, we propose a deterministic sampler reflecting the fact that real-world data tend to form spatially coherent structures. The sampler returns connected components in a progressively densified neighborhood-graph. We present a number of applications where the use of multiple geometric models improves accuracy. These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects; and we also propose a way of using multiple homographies in global SfM algorithms. Source code: https://github.com/danini/clustering-in-consensus-space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISBN
979-8-3503-0129-8
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
11
Strana od-do
5414-5424
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Vancouver
Datum konání akce
18. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001058542605072