How to make an RGBD tracker?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337832" target="_blank" >RIV/68407700:21230/19:00337832 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-11009-3_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-11009-3_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-11009-3_8" target="_blank" >10.1007/978-3-030-11009-3_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to make an RGBD tracker?
Popis výsledku v původním jazyce
We propose a generic framework for converting an arbitrary short-term RGB tracker into an RGBD tracker. The proposed framework has two mild requirements – the short-term tracker provides a bounding box and its object model update can be stopped and resumed. The core of the framework is a depth augmented foreground segmentation which is formulated as an energy minimization problem solved by graph cuts. The proposed framework offers two levels of integration. The first requires that the RGB tracker can be stopped and resumed according to the decision on target visibility. The level-two integration requires that the tracker accept an external mask (foreground region) in the target update. We integrate in the proposed framework the Discriminative Correlation Filter (DCF), and three state-of-the-art trackers – Efficient Convolution Operators for Tracking (ECOhc, ECOgpu) and Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF). Comprehensive experiments on Princeton Tracking Benchmark (PTB) show that level-one integration provides significant improvements for all trackers: DCF average rank improves from 18th to 17th, ECOgpu from 16th to 10th, ECOhc from 15th to 5th and CSR-DCF from 19th to 14th. CSR-DCF with level-two integration achieves the top rank by a clear margin on PTB. Our framework is particularly powerful in occlusion scenarios where it provides 13.5% average improvement and 26% for the best tracker (CSR-DCF).
Název v anglickém jazyce
How to make an RGBD tracker?
Popis výsledku anglicky
We propose a generic framework for converting an arbitrary short-term RGB tracker into an RGBD tracker. The proposed framework has two mild requirements – the short-term tracker provides a bounding box and its object model update can be stopped and resumed. The core of the framework is a depth augmented foreground segmentation which is formulated as an energy minimization problem solved by graph cuts. The proposed framework offers two levels of integration. The first requires that the RGB tracker can be stopped and resumed according to the decision on target visibility. The level-two integration requires that the tracker accept an external mask (foreground region) in the target update. We integrate in the proposed framework the Discriminative Correlation Filter (DCF), and three state-of-the-art trackers – Efficient Convolution Operators for Tracking (ECOhc, ECOgpu) and Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF). Comprehensive experiments on Princeton Tracking Benchmark (PTB) show that level-one integration provides significant improvements for all trackers: DCF average rank improves from 18th to 17th, ECOgpu from 16th to 10th, ECOhc from 15th to 5th and CSR-DCF from 19th to 14th. CSR-DCF with level-two integration achieves the top rank by a clear margin on PTB. Our framework is particularly powerful in occlusion scenarios where it provides 13.5% average improvement and 26% for the best tracker (CSR-DCF).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computer Vision – ECCV 2018 Workshops
ISBN
978-3-030-11008-6
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
148-161
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Munich
Datum konání akce
8. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—