Rodent: Relevance determination in ODE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00339214" target="_blank" >RIV/68407700:21230/19:00339214 - isvavai.cz</a>
Výsledek na webu
<a href="http://bayesiandeeplearning.org/2019/papers/59.pdf" target="_blank" >http://bayesiandeeplearning.org/2019/papers/59.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rodent: Relevance determination in ODE
Popis výsledku v původním jazyce
From a set of observed trajectories of a partially observed system, we aim to learnits underlying (physical) process without having to make too many assumptionsabout the generating model. We start with a very general, over-parameterizedordinary differential equation(ODE) of orderNand learn the minimal complexityof the model, by which we mean both the order of the ODE as well as the minimumnumber of non-zero parameters that are needed to solve the problem. The minimalcomplexity is found by combining theVariational Auto-Encoder(VAE) withAuto-matic Relevance Determination(ARD) to the problem of learning the parametersof an ODE which we callRodent. We show that it is possible to learn not onlyone specific model for a single process, but a manifold of models representingharmonic signals in general.
Název v anglickém jazyce
Rodent: Relevance determination in ODE
Popis výsledku anglicky
From a set of observed trajectories of a partially observed system, we aim to learnits underlying (physical) process without having to make too many assumptionsabout the generating model. We start with a very general, over-parameterizedordinary differential equation(ODE) of orderNand learn the minimal complexityof the model, by which we mean both the order of the ODE as well as the minimumnumber of non-zero parameters that are needed to solve the problem. The minimalcomplexity is found by combining theVariational Auto-Encoder(VAE) withAuto-matic Relevance Determination(ARD) to the problem of learning the parametersof an ODE which we callRodent. We show that it is possible to learn not onlyone specific model for a single process, but a manifold of models representingharmonic signals in general.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů