Minimal Solvers for Rectifying from Radially-Distorted Scales and Change of Scales
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00338477" target="_blank" >RIV/68407700:21230/20:00338477 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00338477
Výsledek na webu
<a href="https://doi.org/10.1007/s11263-019-01216-x" target="_blank" >https://doi.org/10.1007/s11263-019-01216-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-019-01216-x" target="_blank" >10.1007/s11263-019-01216-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Minimal Solvers for Rectifying from Radially-Distorted Scales and Change of Scales
Popis výsledku v původním jazyce
This paper introduces the first minimal solvers that jointly estimate lens distortion and affine rectification from the image of rigidly-transformed coplanar features. The solvers work on scenes without straight lines and, in general, relax strong assumptions about scene content made by the state of the art. The proposed solvers use the affine invariant that coplanar repeats have the same scale in rectified space. The solvers are separated into two groups that differ by how the equal scale invariant of rectified space is used to place constraints on the lens undistortion and rectification parameters. We demonstrate a principled approach for generating stable minimal solvers by the Gröbner basis method, which is accomplished by sampling feasible monomial bases to maximize numerical stability. Synthetic and real-image experiments confirm that the proposed solvers demonstrate superior robustness to noise compared to the state of the art. Accurate rectifications on imagery taken with narrow to fisheye field-of-view lenses demonstrate the wide applicability of the proposed method. The method s fully automatic.
Název v anglickém jazyce
Minimal Solvers for Rectifying from Radially-Distorted Scales and Change of Scales
Popis výsledku anglicky
This paper introduces the first minimal solvers that jointly estimate lens distortion and affine rectification from the image of rigidly-transformed coplanar features. The solvers work on scenes without straight lines and, in general, relax strong assumptions about scene content made by the state of the art. The proposed solvers use the affine invariant that coplanar repeats have the same scale in rectified space. The solvers are separated into two groups that differ by how the equal scale invariant of rectified space is used to place constraints on the lens undistortion and rectification parameters. We demonstrate a principled approach for generating stable minimal solvers by the Gröbner basis method, which is accomplished by sampling feasible monomial bases to maximize numerical stability. Synthetic and real-image experiments confirm that the proposed solvers demonstrate superior robustness to noise compared to the state of the art. Accurate rectifications on imagery taken with narrow to fisheye field-of-view lenses demonstrate the wide applicability of the proposed method. The method s fully automatic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
1573-1405
Svazek periodika
128
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
950-968
Kód UT WoS článku
000521783600001
EID výsledku v databázi Scopus
2-s2.0-85082968851