Data-driven Algorithm for Scheduling with Total Tardiness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340436" target="_blank" >RIV/68407700:21230/20:00340436 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00340436
Výsledek na webu
<a href="https://doi.org/10.5220/0008915300590068" target="_blank" >https://doi.org/10.5220/0008915300590068</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0008915300590068" target="_blank" >10.5220/0008915300590068</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven Algorithm for Scheduling with Total Tardiness
Popis výsledku v původním jazyce
In this paper, we investigate the use of deep learning for solving a classical N P-hard single machine scheduling problem where the criterion is to minimize the total tardiness. Instead of designing an end-to-end machine learning model, we utilize well known decomposition of the problem and we enhance it with a data-driven approach. We have designed a regressor containing a deep neural network that learns and predicts the criterion of a given set of jobs. The network acts as a polynomial-time estimator of the criterion that is used in a singlepass scheduling algorithm based on Lawler's decomposition theorem. Essentially, the regressor guides the algorithm to select the best position for each job. The experimental results show that our data-driven approach can efficiently generalize information from the training phase to significantly larger instances (up to 350 jobs) where it achieves an optimality gap of about 0.5%, which is four times less than the gap of the state-of-the-ar t NBR heuristic.
Název v anglickém jazyce
Data-driven Algorithm for Scheduling with Total Tardiness
Popis výsledku anglicky
In this paper, we investigate the use of deep learning for solving a classical N P-hard single machine scheduling problem where the criterion is to minimize the total tardiness. Instead of designing an end-to-end machine learning model, we utilize well known decomposition of the problem and we enhance it with a data-driven approach. We have designed a regressor containing a deep neural network that learns and predicts the criterion of a given set of jobs. The network acts as a polynomial-time estimator of the criterion that is used in a singlepass scheduling algorithm based on Lawler's decomposition theorem. Essentially, the regressor guides the algorithm to select the best position for each job. The experimental results show that our data-driven approach can efficiently generalize information from the training phase to significantly larger instances (up to 350 jobs) where it achieves an optimality gap of about 0.5%, which is four times less than the gap of the state-of-the-ar t NBR heuristic.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 9th International Conference on Operations Research and Enterprise Systems
ISBN
978-989-758-396-4
ISSN
2184-4372
e-ISSN
—
Počet stran výsledku
10
Strana od-do
59-68
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Valletta
Datum konání akce
22. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000558347400005