Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00361438" target="_blank" >RIV/68407700:21230/23:00361438 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00361438
Výsledek na webu
<a href="http://hdl.handle.net/10467/113234" target="_blank" >http://hdl.handle.net/10467/113234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2022.11.034" target="_blank" >10.1016/j.ejor.2022.11.034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness
Popis výsledku v původním jazyce
In this paper, we investigate the use of the deep learning method for solving a well-known NP-hard single machine scheduling problem with the objective of minimizing the total tardiness. We propose a deep neural network that acts as a polynomial-time estimator of the criterion value used in a single-pass scheduling algorithm based on Lawler’s decomposition and symmetric decomposition proposed by Della Croce et al. Essentially, the neural network guides the algorithm by estimating the best splitting of the problem into subproblems. The paper also describes a new method for generating the training data set, which speeds up the training dataset generation and reduces the average optimality gap of solutions. The experimental results show that our machine learning-driven approach can efficiently generalize information from the training phase to significantly larger instances. Even though the instances used in the training phase have from 75 to 100 jobs, the average optimality gap on instances with up to 800 jobs is 0.26%, which is almost five times less than the gap of the state-of-the-art heuristic.
Název v anglickém jazyce
Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness
Popis výsledku anglicky
In this paper, we investigate the use of the deep learning method for solving a well-known NP-hard single machine scheduling problem with the objective of minimizing the total tardiness. We propose a deep neural network that acts as a polynomial-time estimator of the criterion value used in a single-pass scheduling algorithm based on Lawler’s decomposition and symmetric decomposition proposed by Della Croce et al. Essentially, the neural network guides the algorithm by estimating the best splitting of the problem into subproblems. The paper also describes a new method for generating the training data set, which speeds up the training dataset generation and reduces the average optimality gap of solutions. The experimental results show that our machine learning-driven approach can efficiently generalize information from the training phase to significantly larger instances. Even though the instances used in the training phase have from 75 to 100 jobs, the average optimality gap on instances with up to 800 jobs is 0.26%, which is almost five times less than the gap of the state-of-the-art heuristic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
1872-6860
Svazek periodika
308
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
990-1006
Kód UT WoS článku
000957499300001
EID výsledku v databázi Scopus
2-s2.0-85146477715