On Tower and Checkerboard Neural Network Architectures for Gene Expression Inference
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340463" target="_blank" >RIV/68407700:21230/20:00340463 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1186/s12864-020-06821-6" target="_blank" >https://doi.org/10.1186/s12864-020-06821-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12864-020-06821-6" target="_blank" >10.1186/s12864-020-06821-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Tower and Checkerboard Neural Network Architectures for Gene Expression Inference
Popis výsledku v původním jazyce
Background: One possible approach how to economically facilitate gene expression profiling is to use the L1000 platform which measures the expression of ~1,000 landmark genes and uses a computational method to infer the expression of another ~10,000 genes. One such method for the gene expression inference is a D-GEX which employs neural networks. Results: We propose two novel D-GEX architectures that significantly improve the quality of the inference by increasing the capacity of a network without any increase in the number of trained parameters. The architectures partition the network into individual towers. Our best proposed architecture - a checkerboard architecture with a skip connection and five towers - together with minor changes in the training protocol improves the average mean absolute error of the inference from 0.134 to 0.128. Conclusions: Our proposed approach increases the gene expression inference accuracy without increasing the number of weights of the model and thus without increasing the memory footprint of the model that is limiting its usage.
Název v anglickém jazyce
On Tower and Checkerboard Neural Network Architectures for Gene Expression Inference
Popis výsledku anglicky
Background: One possible approach how to economically facilitate gene expression profiling is to use the L1000 platform which measures the expression of ~1,000 landmark genes and uses a computational method to infer the expression of another ~10,000 genes. One such method for the gene expression inference is a D-GEX which employs neural networks. Results: We propose two novel D-GEX architectures that significantly improve the quality of the inference by increasing the capacity of a network without any increase in the number of trained parameters. The architectures partition the network into individual towers. Our best proposed architecture - a checkerboard architecture with a skip connection and five towers - together with minor changes in the training protocol improves the average mean absolute error of the inference from 0.134 to 0.128. Conclusions: Our proposed approach increases the gene expression inference accuracy without increasing the number of weights of the model and thus without increasing the memory footprint of the model that is limiting its usage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Genomics
ISSN
1471-2164
e-ISSN
1471-2164
Svazek periodika
21
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000601211700003
EID výsledku v databázi Scopus
2-s2.0-85097603076