Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Tower and Checkerboard Neural Network Architectures for Gene Expression Inference

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340463" target="_blank" >RIV/68407700:21230/20:00340463 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1186/s12864-020-06821-6" target="_blank" >https://doi.org/10.1186/s12864-020-06821-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12864-020-06821-6" target="_blank" >10.1186/s12864-020-06821-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Tower and Checkerboard Neural Network Architectures for Gene Expression Inference

  • Popis výsledku v původním jazyce

    Background: One possible approach how to economically facilitate gene expression profiling is to use the L1000 platform which measures the expression of ~1,000 landmark genes and uses a computational method to infer the expression of another ~10,000 genes. One such method for the gene expression inference is a D-GEX which employs neural networks. Results: We propose two novel D-GEX architectures that significantly improve the quality of the inference by increasing the capacity of a network without any increase in the number of trained parameters. The architectures partition the network into individual towers. Our best proposed architecture - a checkerboard architecture with a skip connection and five towers - together with minor changes in the training protocol improves the average mean absolute error of the inference from 0.134 to 0.128. Conclusions: Our proposed approach increases the gene expression inference accuracy without increasing the number of weights of the model and thus without increasing the memory footprint of the model that is limiting its usage.

  • Název v anglickém jazyce

    On Tower and Checkerboard Neural Network Architectures for Gene Expression Inference

  • Popis výsledku anglicky

    Background: One possible approach how to economically facilitate gene expression profiling is to use the L1000 platform which measures the expression of ~1,000 landmark genes and uses a computational method to infer the expression of another ~10,000 genes. One such method for the gene expression inference is a D-GEX which employs neural networks. Results: We propose two novel D-GEX architectures that significantly improve the quality of the inference by increasing the capacity of a network without any increase in the number of trained parameters. The architectures partition the network into individual towers. Our best proposed architecture - a checkerboard architecture with a skip connection and five towers - together with minor changes in the training protocol improves the average mean absolute error of the inference from 0.134 to 0.128. Conclusions: Our proposed approach increases the gene expression inference accuracy without increasing the number of weights of the model and thus without increasing the memory footprint of the model that is limiting its usage.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BMC Genomics

  • ISSN

    1471-2164

  • e-ISSN

    1471-2164

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000601211700003

  • EID výsledku v databázi Scopus

    2-s2.0-85097603076