Coupling cell detection and tracking by temporal feedback
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341865" target="_blank" >RIV/68407700:21230/20:00341865 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00138-020-01072-7" target="_blank" >https://doi.org/10.1007/s00138-020-01072-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00138-020-01072-7" target="_blank" >10.1007/s00138-020-01072-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coupling cell detection and tracking by temporal feedback
Popis výsledku v původním jazyce
The tracking-by-detection strategy is the backbone of many methods for tracking living cells in time-lapse microscopy. An object detector is first applied to the input images, and the resulting detection candidates are then linked by a data association module. The performance of such methods strongly depends on the quality of the detector because detection errors propagate to the linking step. To tackle this issue, we propose a joint model for segmentation, detection and tracking. The model is defined implicitly as limiting distribution of a Markov chain Monte Carlo algorithm and contains a temporal feedback, which allows to dynamically alter detector parameters using hints given by neighboring frames and, in this way, correct detection errors. The proposed method can integrate any detector and is therefore not restricted to a specific domain. The parameters of the model are learned using an objective based on empirical risk minimization. We use our method to conduct large-scale experiments for confluent cultures of endothelial cells and evaluate its performance in the ISBI Cell Tracking Challenge, where it consistently scored among the best three methods.
Název v anglickém jazyce
Coupling cell detection and tracking by temporal feedback
Popis výsledku anglicky
The tracking-by-detection strategy is the backbone of many methods for tracking living cells in time-lapse microscopy. An object detector is first applied to the input images, and the resulting detection candidates are then linked by a data association module. The performance of such methods strongly depends on the quality of the detector because detection errors propagate to the linking step. To tackle this issue, we propose a joint model for segmentation, detection and tracking. The model is defined implicitly as limiting distribution of a Markov chain Monte Carlo algorithm and contains a temporal feedback, which allows to dynamically alter detector parameters using hints given by neighboring frames and, in this way, correct detection errors. The proposed method can integrate any detector and is therefore not restricted to a specific domain. The parameters of the model are learned using an objective based on empirical risk minimization. We use our method to conduct large-scale experiments for confluent cultures of endothelial cells and evaluate its performance in the ISBI Cell Tracking Challenge, where it consistently scored among the best three methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Vision and Applications
ISSN
0932-8092
e-ISSN
1432-1769
Svazek periodika
31
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000526453100001
EID výsledku v databázi Scopus
2-s2.0-85083579824