Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Coupling cell detection and tracking by temporal feedback

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341865" target="_blank" >RIV/68407700:21230/20:00341865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00138-020-01072-7" target="_blank" >https://doi.org/10.1007/s00138-020-01072-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00138-020-01072-7" target="_blank" >10.1007/s00138-020-01072-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Coupling cell detection and tracking by temporal feedback

  • Popis výsledku v původním jazyce

    The tracking-by-detection strategy is the backbone of many methods for tracking living cells in time-lapse microscopy. An object detector is first applied to the input images, and the resulting detection candidates are then linked by a data association module. The performance of such methods strongly depends on the quality of the detector because detection errors propagate to the linking step. To tackle this issue, we propose a joint model for segmentation, detection and tracking. The model is defined implicitly as limiting distribution of a Markov chain Monte Carlo algorithm and contains a temporal feedback, which allows to dynamically alter detector parameters using hints given by neighboring frames and, in this way, correct detection errors. The proposed method can integrate any detector and is therefore not restricted to a specific domain. The parameters of the model are learned using an objective based on empirical risk minimization. We use our method to conduct large-scale experiments for confluent cultures of endothelial cells and evaluate its performance in the ISBI Cell Tracking Challenge, where it consistently scored among the best three methods.

  • Název v anglickém jazyce

    Coupling cell detection and tracking by temporal feedback

  • Popis výsledku anglicky

    The tracking-by-detection strategy is the backbone of many methods for tracking living cells in time-lapse microscopy. An object detector is first applied to the input images, and the resulting detection candidates are then linked by a data association module. The performance of such methods strongly depends on the quality of the detector because detection errors propagate to the linking step. To tackle this issue, we propose a joint model for segmentation, detection and tracking. The model is defined implicitly as limiting distribution of a Markov chain Monte Carlo algorithm and contains a temporal feedback, which allows to dynamically alter detector parameters using hints given by neighboring frames and, in this way, correct detection errors. The proposed method can integrate any detector and is therefore not restricted to a specific domain. The parameters of the model are learned using an objective based on empirical risk minimization. We use our method to conduct large-scale experiments for confluent cultures of endothelial cells and evaluate its performance in the ISBI Cell Tracking Challenge, where it consistently scored among the best three methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Machine Vision and Applications

  • ISSN

    0932-8092

  • e-ISSN

    1432-1769

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    000526453100001

  • EID výsledku v databázi Scopus

    2-s2.0-85083579824