Alquist 3.0: Alexa Prize Bot Using Conversational Knowledge Graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342146" target="_blank" >RIV/68407700:21230/20:00342146 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00342146
Výsledek na webu
<a href="https://m.media-amazon.com/images/G/01/mobile-apps/dex/alexa/alexaprize/assets/challenge3/proceedings/Czech-Alquist.pdf" target="_blank" >https://m.media-amazon.com/images/G/01/mobile-apps/dex/alexa/alexaprize/assets/challenge3/proceedings/Czech-Alquist.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Alquist 3.0: Alexa Prize Bot Using Conversational Knowledge Graph
Popis výsledku v původním jazyce
The third version of the open-domain dialogue system Alquist developed within the Alexa Prize 2020 competition is designed to conduct coherent and engaging conversations on popular topics. The main novel contribution is the introduction of a system leveraging an innovative approach based on a conversational knowledge graph and adjacency pairs. The conversational knowledge graph allows the system to utilize knowledge expressed during the dialogue in consequent turns and across conversations. Dialogue adjacency pairs divide the conversation into small conversational structures, which can be combined and allow the system to react to a wide range of user inputs flexibly. We discuss and describe Alquist’s pipeline, data acquisition and processing, dialogue manager, NLG, knowledge aggregation, and a hierarchy of adjacency pairs. We present the experimental results of the individual parts of the system.
Název v anglickém jazyce
Alquist 3.0: Alexa Prize Bot Using Conversational Knowledge Graph
Popis výsledku anglicky
The third version of the open-domain dialogue system Alquist developed within the Alexa Prize 2020 competition is designed to conduct coherent and engaging conversations on popular topics. The main novel contribution is the introduction of a system leveraging an innovative approach based on a conversational knowledge graph and adjacency pairs. The conversational knowledge graph allows the system to utilize knowledge expressed during the dialogue in consequent turns and across conversations. Dialogue adjacency pairs divide the conversation into small conversational structures, which can be combined and allow the system to react to a wide range of user inputs flexibly. We discuss and describe Alquist’s pipeline, data acquisition and processing, dialogue manager, NLG, knowledge aggregation, and a hierarchy of adjacency pairs. We present the experimental results of the individual parts of the system.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů