Greedy Randomized Adaptive Search Procedure for Close Enough Orienteering Problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342394" target="_blank" >RIV/68407700:21230/20:00342394 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3341105.3374010" target="_blank" >https://doi.org/10.1145/3341105.3374010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3341105.3374010" target="_blank" >10.1145/3341105.3374010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Greedy Randomized Adaptive Search Procedure for Close Enough Orienteering Problem
Popis výsledku v původním jazyce
In this paper, we address the Close Enough Orienteering Problem (CEOP) that is motivated to find the most rewarding route visiting disk-shaped regions under the given travel budget. The CEOP differs from the regular OP in the continuous optimization of finding the most suitable waypoint locations to collect the reward associated with each region of interest in addition to the selection of the subset of the regions and sequence of their visits as in the OP. We propose to employ the Greedy Randomized Adaptive Search Procedure (GRASP) combinatorial metaheuristic to solve the addressed CEOP, in particular, the GRASP with Segment Remove. The continuous optimization is addressed by the newly introduced heuristic search that is applied in the construction phase and also in the local search phase of the GRASP. The proposed approach has been empirically evaluated using existing benchmarks, and based on the reported comparison with existing algorithms, the proposed GRASP-based approach provides solutions with the competitive quality while its computational requirements are low.
Název v anglickém jazyce
Greedy Randomized Adaptive Search Procedure for Close Enough Orienteering Problem
Popis výsledku anglicky
In this paper, we address the Close Enough Orienteering Problem (CEOP) that is motivated to find the most rewarding route visiting disk-shaped regions under the given travel budget. The CEOP differs from the regular OP in the continuous optimization of finding the most suitable waypoint locations to collect the reward associated with each region of interest in addition to the selection of the subset of the regions and sequence of their visits as in the OP. We propose to employ the Greedy Randomized Adaptive Search Procedure (GRASP) combinatorial metaheuristic to solve the addressed CEOP, in particular, the GRASP with Segment Remove. The continuous optimization is addressed by the newly introduced heuristic search that is applied in the construction phase and also in the local search phase of the GRASP. The proposed approach has been empirically evaluated using existing benchmarks, and based on the reported comparison with existing algorithms, the proposed GRASP-based approach provides solutions with the competitive quality while its computational requirements are low.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-20238S" target="_blank" >GA19-20238S: Multi-robotické monitorování dynamických prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the ACM Symposium on Applied Computing
ISBN
978-1-4503-6866-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
808-814
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Brno
Datum konání akce
30. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000569720900117