Sectorised base stations for FSO ground-to-train communications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342444" target="_blank" >RIV/68407700:21230/20:00342444 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1049/iet-opt.2019.0155" target="_blank" >https://doi.org/10.1049/iet-opt.2019.0155</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1049/iet-opt.2019.0155" target="_blank" >10.1049/iet-opt.2019.0155</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sectorised base stations for FSO ground-to-train communications
Popis výsledku v původním jazyce
Evolution and accessibility of smart-phones have led to a huge demand in network bandwidth. The ubiquitous use of smart-phones in high-speed trains poses a unique challenge in delivering high-speed internet service on board. This challenge can be overcome by employing free-space optics, an alternative to radio-frequency technology. Previous coverage models for ground–train communications employed single laser systems with a larger divergence angle to cover a larger distance. Larger divergence angles lead to larger geometric losses, which may result in a non-reliable communication link. This study proposes a sectorised multi-beam coverage model with a smaller divergence angle to reduce the impact of geometric losses in the system. This study also proposes two receiver (Rx) architectures for Rxs deployed on the train. Along with geometric losses, the atmospheric attenuation is taken into consideration for the FSO link. The performance of the ground–train communications system in terms of bit-error-rate is evaluated under weak turbulence conditions via numerical simulation.
Název v anglickém jazyce
Sectorised base stations for FSO ground-to-train communications
Popis výsledku anglicky
Evolution and accessibility of smart-phones have led to a huge demand in network bandwidth. The ubiquitous use of smart-phones in high-speed trains poses a unique challenge in delivering high-speed internet service on board. This challenge can be overcome by employing free-space optics, an alternative to radio-frequency technology. Previous coverage models for ground–train communications employed single laser systems with a larger divergence angle to cover a larger distance. Larger divergence angles lead to larger geometric losses, which may result in a non-reliable communication link. This study proposes a sectorised multi-beam coverage model with a smaller divergence angle to reduce the impact of geometric losses in the system. This study also proposes two receiver (Rx) architectures for Rxs deployed on the train. Along with geometric losses, the atmospheric attenuation is taken into consideration for the FSO link. The performance of the ground–train communications system in terms of bit-error-rate is evaluated under weak turbulence conditions via numerical simulation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IET Optoelectronics
ISSN
1751-8768
e-ISSN
1751-8776
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
312-318
Kód UT WoS článku
000572412700013
EID výsledku v databázi Scopus
2-s2.0-85091589634