HUMAN - Hierarchical Clustering forUnsupervised Anomaly Detection & Interpretation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342469" target="_blank" >RIV/68407700:21230/20:00342469 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/NoF50125.2020.9249194" target="_blank" >https://doi.org/10.1109/NoF50125.2020.9249194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NoF50125.2020.9249194" target="_blank" >10.1109/NoF50125.2020.9249194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
HUMAN - Hierarchical Clustering forUnsupervised Anomaly Detection & Interpretation
Popis výsledku v původním jazyce
The automatic detection and interpretation of network traffic anomalies through machine learning is a well-known problem, for which no general solution is available. Both supervised and unsupervised (i.e., anomaly detection) approaches require prior knowledge on the monitoring data, either in terms of normal operation profiles or on the specific anomalies to detect. As a consequence, both approaches have clear limitations when it comes to detecting, and in particular interpreting, previously unseen events. We present HUMAN, a general hierarchical-clustering-based approach for unsupervised network traffic analysis, which can both detect and interpret anomalous behaviors ina completely black-box manner, without relying on any ground-truth on the system under analysis. HUMAN can detect and interpret complex patterns in the analyzed data, using a structural approach which exploits hierarchical cluster relationships and correlations among features. We describe the building blocks of HUMAN and explain its functioning in detail, using as case study the detection and interpretation of performance issues in major cloud platforms, through the unsupervised analysis of distributed active cloud latency measurements. The HUMAN approach can be applied to the unsupervised analysis of any kind of nested or hierarchically structured multi-dimensional data, showing the potential of hierarchical clustering for general unsupervised data analytics.
Název v anglickém jazyce
HUMAN - Hierarchical Clustering forUnsupervised Anomaly Detection & Interpretation
Popis výsledku anglicky
The automatic detection and interpretation of network traffic anomalies through machine learning is a well-known problem, for which no general solution is available. Both supervised and unsupervised (i.e., anomaly detection) approaches require prior knowledge on the monitoring data, either in terms of normal operation profiles or on the specific anomalies to detect. As a consequence, both approaches have clear limitations when it comes to detecting, and in particular interpreting, previously unseen events. We present HUMAN, a general hierarchical-clustering-based approach for unsupervised network traffic analysis, which can both detect and interpret anomalous behaviors ina completely black-box manner, without relying on any ground-truth on the system under analysis. HUMAN can detect and interpret complex patterns in the analyzed data, using a structural approach which exploits hierarchical cluster relationships and correlations among features. We describe the building blocks of HUMAN and explain its functioning in detail, using as case study the detection and interpretation of performance issues in major cloud platforms, through the unsupervised analysis of distributed active cloud latency measurements. The HUMAN approach can be applied to the unsupervised analysis of any kind of nested or hierarchically structured multi-dimensional data, showing the potential of hierarchical clustering for general unsupervised data analytics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th International Conference on Networks of the Future (NoF 2020)
ISBN
978-1-7281-8055-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
132-140
Název nakladatele
IEEE
Místo vydání
St. Paul, Minnesota
Místo konání akce
Bordeaux
Datum konání akce
12. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—