Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

WhatsThat? On the Usage of Hierarchical Clustering for Unsupervised Detection & Interpretation of Network Attacks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342465" target="_blank" >RIV/68407700:21230/20:00342465 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/EuroSPW51379.2020.00084" target="_blank" >https://doi.org/10.1109/EuroSPW51379.2020.00084</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/EuroSPW51379.2020.00084" target="_blank" >10.1109/EuroSPW51379.2020.00084</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    WhatsThat? On the Usage of Hierarchical Clustering for Unsupervised Detection & Interpretation of Network Attacks

  • Popis výsledku v původním jazyce

    The automatic detection and interpretation of network attacks through machine learning is a well-known problem, for which no general solution is available. Supervised learning and anomaly detection approaches require prior knowledge about the system under analysis, either in terms of normal operation profiles or on the specific attacks to detect. As a consequence, both approaches have clear limitations when it comes to detecting, and in particular interpreting, previously unseen attacks and anomalies. In this paper we present WhatsThat, a novel approach to unsupervised network anomaly detection, which can both detect and interpret anomalous behaviors in a completely black-box manner, without relying on any ground-truth on the system under analysis. WhatsThat relies on hierarchical clustering techniques to discover and characterize anomalous patterns present in nested or hierarchically structured multidimensional data, which is common in network traffic e.g., due to multi-layer protocols. The solution uses unsupervised cluster validity metrics to automatically explore the data structure, and builds on automatic identification of relevant features to provide meaningful descriptions of the detected patterns. We showcase WhatsThat in the detection and interpretation of network attacks hidden in real, large-scale network traffic collected at a transit Internet backbone network. While WhatsThat is mainly tailored for unsupervised anomaly detection and interpretation, it can also be applied to the unsupervised analysis of any kind of nested or hierarchically structured multi-dimensional data, showing the potential of hierarchical clustering for general unsupervised data analytics.

  • Název v anglickém jazyce

    WhatsThat? On the Usage of Hierarchical Clustering for Unsupervised Detection & Interpretation of Network Attacks

  • Popis výsledku anglicky

    The automatic detection and interpretation of network attacks through machine learning is a well-known problem, for which no general solution is available. Supervised learning and anomaly detection approaches require prior knowledge about the system under analysis, either in terms of normal operation profiles or on the specific attacks to detect. As a consequence, both approaches have clear limitations when it comes to detecting, and in particular interpreting, previously unseen attacks and anomalies. In this paper we present WhatsThat, a novel approach to unsupervised network anomaly detection, which can both detect and interpret anomalous behaviors in a completely black-box manner, without relying on any ground-truth on the system under analysis. WhatsThat relies on hierarchical clustering techniques to discover and characterize anomalous patterns present in nested or hierarchically structured multidimensional data, which is common in network traffic e.g., due to multi-layer protocols. The solution uses unsupervised cluster validity metrics to automatically explore the data structure, and builds on automatic identification of relevant features to provide meaningful descriptions of the detected patterns. We showcase WhatsThat in the detection and interpretation of network attacks hidden in real, large-scale network traffic collected at a transit Internet backbone network. While WhatsThat is mainly tailored for unsupervised anomaly detection and interpretation, it can also be applied to the unsupervised analysis of any kind of nested or hierarchically structured multi-dimensional data, showing the potential of hierarchical clustering for general unsupervised data analytics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

  • ISBN

    978-1-7281-8597-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    574-583

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway (New Jersey)

  • Místo konání akce

    online

  • Datum konání akce

    7. 9. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000630275400073