Integrating UAVs as Transparent Relays into Mobile Networks: A Deep Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00345389" target="_blank" >RIV/68407700:21230/20:00345389 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/PIMRC48278.2020.9217280" target="_blank" >http://dx.doi.org/10.1109/PIMRC48278.2020.9217280</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PIMRC48278.2020.9217280" target="_blank" >10.1109/PIMRC48278.2020.9217280</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrating UAVs as Transparent Relays into Mobile Networks: A Deep Learning Approach
Popis výsledku v původním jazyce
Since flying base stations (FlyBSs) are energy constrained, it is convenient for them to act as transparent relays with minimal communication control and management functionalities. The challenge when using the transparent relays is the inability to measure the relaying channel quality between the relay and user equipment (UE). This channel quality information is required for communication-related functions, such as the UE association, however, this information is not available to the network. In this letter, we show that it is possible to determine the UEs' association based only on the information commonly available to the network, i.e., the quality of the cellular channels between conventional static base stations (SBSs) and the UEs. Our proposed association scheme is implemented through deep neural networks, which capitalize on the mutual relation between the unknown relaying channel from any UE to the FlyBS and the known cellular channels from this UE to multiple surrounding SBSs. We demonstrate that our proposed framework yields a sum capacity that is close to the capacity reached by solving the association via exhaustive search.
Název v anglickém jazyce
Integrating UAVs as Transparent Relays into Mobile Networks: A Deep Learning Approach
Popis výsledku anglicky
Since flying base stations (FlyBSs) are energy constrained, it is convenient for them to act as transparent relays with minimal communication control and management functionalities. The challenge when using the transparent relays is the inability to measure the relaying channel quality between the relay and user equipment (UE). This channel quality information is required for communication-related functions, such as the UE association, however, this information is not available to the network. In this letter, we show that it is possible to determine the UEs' association based only on the information commonly available to the network, i.e., the quality of the cellular channels between conventional static base stations (SBSs) and the UEs. Our proposed association scheme is implemented through deep neural networks, which capitalize on the mutual relation between the unknown relaying channel from any UE to the FlyBS and the known cellular channels from this UE to multiple surrounding SBSs. We demonstrate that our proposed framework yields a sum capacity that is close to the capacity reached by solving the association via exhaustive search.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-27023S" target="_blank" >GA18-27023S: Komunikace v samo-optimalizujících se mobilních sítích s drony</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications
ISBN
978-1-7281-4490-0
ISSN
1558-2612
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Boston
Místo konání akce
London
Datum konání akce
31. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000631491700191