Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated Construction of Bounded-loss Imperfect-recall Abstractions in Extensive-form Games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00345733" target="_blank" >RIV/68407700:21230/20:00345733 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.artint.2020.103248" target="_blank" >https://doi.org/10.1016/j.artint.2020.103248</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.artint.2020.103248" target="_blank" >10.1016/j.artint.2020.103248</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated Construction of Bounded-loss Imperfect-recall Abstractions in Extensive-form Games

  • Popis výsledku v původním jazyce

    Extensive-form games (EFGs) model finite sequential interactions between players. The amount of memory required to represent these games is the main bottleneck of algorithms for computing optimal strategies and the size of these strategies is often impractical for real-world applications. A common approach to tackle the memory bottleneck is to use information abstraction that removes parts of information available to players thus reducing the number of decision points in the game. However, existing information-abstraction techniques are either specific for a particular domain, they do not provide any quality guarantees, or they are applicable to very small subclasses of EFGs. We present domain-independent abstraction methods for creating imperfect recall abstractions in extensive-form games that allow computing strategies that are (near) optimal in the original game. To this end, we introduce two novel algorithms, FPIRA and CFR+IRA, based on fictitious play and counterfactual regret minimization. These algorithms can start with an arbitrary domain specific, or the coarsest possible, abstraction of the original game. The algorithms iteratively detect the missing information they require for computing a strategy for the abstract game that is (near) optimal in the original game. This information is then included back into the abstract game. Moreover, our algorithms are able to exploit imperfect-recall abstractions that allow players to forget even history of their own actions. However, the algorithms require traversing the complete unabstracted game tree. We experimentally show that our algorithms can closely approximate Nash equilibrium of large games using abstraction with as little as 0.9% of information sets of the original game. Moreover, the results suggest that memory savings increase with the increasing size of the original games.

  • Název v anglickém jazyce

    Automated Construction of Bounded-loss Imperfect-recall Abstractions in Extensive-form Games

  • Popis výsledku anglicky

    Extensive-form games (EFGs) model finite sequential interactions between players. The amount of memory required to represent these games is the main bottleneck of algorithms for computing optimal strategies and the size of these strategies is often impractical for real-world applications. A common approach to tackle the memory bottleneck is to use information abstraction that removes parts of information available to players thus reducing the number of decision points in the game. However, existing information-abstraction techniques are either specific for a particular domain, they do not provide any quality guarantees, or they are applicable to very small subclasses of EFGs. We present domain-independent abstraction methods for creating imperfect recall abstractions in extensive-form games that allow computing strategies that are (near) optimal in the original game. To this end, we introduce two novel algorithms, FPIRA and CFR+IRA, based on fictitious play and counterfactual regret minimization. These algorithms can start with an arbitrary domain specific, or the coarsest possible, abstraction of the original game. The algorithms iteratively detect the missing information they require for computing a strategy for the abstract game that is (near) optimal in the original game. This information is then included back into the abstract game. Moreover, our algorithms are able to exploit imperfect-recall abstractions that allow players to forget even history of their own actions. However, the algorithms require traversing the complete unabstracted game tree. We experimentally show that our algorithms can closely approximate Nash equilibrium of large games using abstraction with as little as 0.9% of information sets of the original game. Moreover, the results suggest that memory savings increase with the increasing size of the original games.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial Intelligence

  • ISSN

    0004-3702

  • e-ISSN

    1872-7921

  • Svazek periodika

    282

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    36

  • Strana od-do

  • Kód UT WoS článku

    000527317300004

  • EID výsledku v databázi Scopus

    2-s2.0-85079664371