Approximating Maxmin Strategies in Imperfect Recall Games Using A-loss Recall Property
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00318608" target="_blank" >RIV/68407700:21230/18:00318608 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X17304097" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X17304097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2017.11.010" target="_blank" >10.1016/j.ijar.2017.11.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximating Maxmin Strategies in Imperfect Recall Games Using A-loss Recall Property
Popis výsledku v původním jazyce
Extensive-form games with imperfect recall are an important model of dynamic games where the players are allowed to forget previously known information. Often, imperfect recall games result from an abstraction algorithm that simplifies a large game with perfect recall. Solving imperfect recall games is known to be a hard problem, and thus it is useful to search for a subclass of imperfect recall games which offers sufficient memory savings while being efficiently solvable. The abstraction process can then be guided to result in a game from this class. We focus on a subclass of imperfect recall games called A-loss recall games. First, we provide a complete picture of the complexity of solving imperfect recall and A-loss recall games. We show that the A-loss recall property allows us to compute a best response in polynomial time (computing a best response is NP-hard in imperfect recall games). This allows us to create a practical algorithm for approximating maxmin strategies in two-player games where the maximizing player has imperfect recall and the minimizing player has A-loss recall. This algorithm is capable of solving some games with up to 5⋅109 states in approximately 1 hour. Finally, we demonstrate that the use of imperfect recall abstraction can reduce the size of the strategy representation to as low as 0.03% of the size of the strategy representation in the original perfect recall game without sacrificing the quality of the maxmin strategy obtained by solving this abstraction.
Název v anglickém jazyce
Approximating Maxmin Strategies in Imperfect Recall Games Using A-loss Recall Property
Popis výsledku anglicky
Extensive-form games with imperfect recall are an important model of dynamic games where the players are allowed to forget previously known information. Often, imperfect recall games result from an abstraction algorithm that simplifies a large game with perfect recall. Solving imperfect recall games is known to be a hard problem, and thus it is useful to search for a subclass of imperfect recall games which offers sufficient memory savings while being efficiently solvable. The abstraction process can then be guided to result in a game from this class. We focus on a subclass of imperfect recall games called A-loss recall games. First, we provide a complete picture of the complexity of solving imperfect recall and A-loss recall games. We show that the A-loss recall property allows us to compute a best response in polynomial time (computing a best response is NP-hard in imperfect recall games). This allows us to create a practical algorithm for approximating maxmin strategies in two-player games where the maximizing player has imperfect recall and the minimizing player has A-loss recall. This algorithm is capable of solving some games with up to 5⋅109 states in approximately 1 hour. Finally, we demonstrate that the use of imperfect recall abstraction can reduce the size of the strategy representation to as low as 0.03% of the size of the strategy representation in the original perfect recall game without sacrificing the quality of the maxmin strategy obtained by solving this abstraction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23235S" target="_blank" >GA15-23235S: Abstrakce a extenzivní hry s nedokonalou pamětí</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
1873-4731
Svazek periodika
93
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
37
Strana od-do
290-326
Kód UT WoS článku
000424721400017
EID výsledku v databázi Scopus
2-s2.0-85037089484