Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combining Incremental Strategy Generation and Branch and Bound Search for Computing Maxmin Strategies in Imperfect Recall Games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315397" target="_blank" >RIV/68407700:21230/17:00315397 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.researchgate.net/publication/317095657_Combining_incremental_strategy_generation_and_branch_and_bound_search_for_computing_maxmin_strategies_in_imperfect_recall_games" target="_blank" >https://www.researchgate.net/publication/317095657_Combining_incremental_strategy_generation_and_branch_and_bound_search_for_computing_maxmin_strategies_in_imperfect_recall_games</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combining Incremental Strategy Generation and Branch and Bound Search for Computing Maxmin Strategies in Imperfect Recall Games

  • Popis výsledku v původním jazyce

    Extensive-form games with imperfect recall are an important model of dynamic games where the players are allowed to forget previously known information. Often, imperfect recall games are the result of an abstraction algorithm that simplifies a large game with perfect recall. Unfortunately, solving an imperfect recall game has fundamental problems since a Nash equilibrium does not have to exist. Alternatively, we can seek maxmin strategies that guarantee an expected outcome. The only existing algorithm computing maxmin strategies in two-player imperfect recall games without absentmindedness, however, requires approximating a bilinear mathematical program that is proportional to the size of the whole game and thus has a limited scalability. We propose a novel algorithm for computing maxmin strategies in this class of games that combines this approximate algorithm with an incremental strategy-generation technique designed previously for extensive-form games with perfect recall. Experimental evaluation shows that the novel algorithm builds only a fraction of the game tree and improves the scalability by several orders of magnitude. Finally, we demonstrate that our algorithm can solve an abstracted variant of a large game faster compared to the algorithms operating on the unabstracted perfect-recall variant.

  • Název v anglickém jazyce

    Combining Incremental Strategy Generation and Branch and Bound Search for Computing Maxmin Strategies in Imperfect Recall Games

  • Popis výsledku anglicky

    Extensive-form games with imperfect recall are an important model of dynamic games where the players are allowed to forget previously known information. Often, imperfect recall games are the result of an abstraction algorithm that simplifies a large game with perfect recall. Unfortunately, solving an imperfect recall game has fundamental problems since a Nash equilibrium does not have to exist. Alternatively, we can seek maxmin strategies that guarantee an expected outcome. The only existing algorithm computing maxmin strategies in two-player imperfect recall games without absentmindedness, however, requires approximating a bilinear mathematical program that is proportional to the size of the whole game and thus has a limited scalability. We propose a novel algorithm for computing maxmin strategies in this class of games that combines this approximate algorithm with an incremental strategy-generation technique designed previously for extensive-form games with perfect recall. Experimental evaluation shows that the novel algorithm builds only a fraction of the game tree and improves the scalability by several orders of magnitude. Finally, we demonstrate that our algorithm can solve an abstracted variant of a large game faster compared to the algorithms operating on the unabstracted perfect-recall variant.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-23235S" target="_blank" >GA15-23235S: Abstrakce a extenzivní hry s nedokonalou pamětí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 31th AAAI Conference on Artificial Intelligence

  • ISBN

    978-1-57735-786-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    902-910

  • Název nakladatele

    AAAI Press

  • Místo vydání

    Menlo Park

  • Místo konání akce

    San Francisco

  • Datum konání akce

    4. 2. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku