Computing Maxmin Strategies in Extensive-form Zero-sum Games with Imperfect Recall
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315209" target="_blank" >RIV/68407700:21230/17:00315209 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0006121200630074" target="_blank" >http://dx.doi.org/10.5220/0006121200630074</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0006121200630074" target="_blank" >10.5220/0006121200630074</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing Maxmin Strategies in Extensive-form Zero-sum Games with Imperfect Recall
Popis výsledku v původním jazyce
Extensive-form games with imperfect recall are an important game-theoretic model that allows a compact representation of strategies in dynamic strategic interactions. Practical use of imperfect recall games is limited due to negative theoretical results: a Nash equilibrium does not have to exist, computing maxmin strategies is NP-hard, and they may require irrational numbers. We present the first algorithm for approximating maxmin strategies in two-player zero-sum imperfect recall games without absentmindedness. We modify the wellknown sequence-form linear program to model strategies in imperfect recall games resulting in a bilinear program and use a recent technique to approximate the bilinear terms. Our main algorithm is a branch-andbound search that provably reaches the desired approximation after an exponential number of steps in the size of the game. Experimental evaluation shows that the proposed algorithm can approximate maxmin strategies of randomly generated imperfect recall games of sizes beyond toy-problems within few minutes.
Název v anglickém jazyce
Computing Maxmin Strategies in Extensive-form Zero-sum Games with Imperfect Recall
Popis výsledku anglicky
Extensive-form games with imperfect recall are an important game-theoretic model that allows a compact representation of strategies in dynamic strategic interactions. Practical use of imperfect recall games is limited due to negative theoretical results: a Nash equilibrium does not have to exist, computing maxmin strategies is NP-hard, and they may require irrational numbers. We present the first algorithm for approximating maxmin strategies in two-player zero-sum imperfect recall games without absentmindedness. We modify the wellknown sequence-form linear program to model strategies in imperfect recall games resulting in a bilinear program and use a recent technique to approximate the bilinear terms. Our main algorithm is a branch-andbound search that provably reaches the desired approximation after an exponential number of steps in the size of the game. Experimental evaluation shows that the proposed algorithm can approximate maxmin strategies of randomly generated imperfect recall games of sizes beyond toy-problems within few minutes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23235S" target="_blank" >GA15-23235S: Abstrakce a extenzivní hry s nedokonalou pamětí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2
ISBN
978-989-758-220-2
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
63-74
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Porto
Datum konání akce
24. 2. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000413244200006