Transfer of Inter-Robotic Inductive Classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346395" target="_blank" >RIV/68407700:21230/20:00346395 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICACR51161.2020.9265509" target="_blank" >https://doi.org/10.1109/ICACR51161.2020.9265509</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICACR51161.2020.9265509" target="_blank" >10.1109/ICACR51161.2020.9265509</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer of Inter-Robotic Inductive Classifier
Popis výsledku v původním jazyce
In multi-robot deployments, the robots need to share and integrate their own experience and perform transfer learning. Under the assumption that the robots have the same morphology and carry equivalent sensory equipment, the problem of transfer learning can be considered incremental learning. Thus, the transfer learning problem inherits the challenges of incremental learning, such as catastrophic forgetting and concept drift. In catastrophic forgetting, the model abruptly forgets the previously learned knowledge during the learning process. The concept drift arises with different experiences between consecutively sampled models. However, state-of-the-art robotic transfer learning approaches do not address both challenges at once. In this paper, we propose to use an incremental classifier on a transfer learning problem. The feasibility of the proposed approach is demonstrated in a real deployment. The robot consistently merges two classifiers learned on two different tasks into a classifier that performs well on both tasks.
Název v anglickém jazyce
Transfer of Inter-Robotic Inductive Classifier
Popis výsledku anglicky
In multi-robot deployments, the robots need to share and integrate their own experience and perform transfer learning. Under the assumption that the robots have the same morphology and carry equivalent sensory equipment, the problem of transfer learning can be considered incremental learning. Thus, the transfer learning problem inherits the challenges of incremental learning, such as catastrophic forgetting and concept drift. In catastrophic forgetting, the model abruptly forgets the previously learned knowledge during the learning process. The concept drift arises with different experiences between consecutively sampled models. However, state-of-the-art robotic transfer learning approaches do not address both challenges at once. In this paper, we propose to use an incremental classifier on a transfer learning problem. The feasibility of the proposed approach is demonstrated in a real deployment. The robot consistently merges two classifiers learned on two different tasks into a classifier that performs well on both tasks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18858S" target="_blank" >GA18-18858S: Metody kontinuálního učení řízení pohybu vícenohých kráčejích robotů v úlohách autonomního sběru dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 4 th International Conference on Automation, Control and Robots
ISBN
978-1-7281-9207-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
32-36
Název nakladatele
IEEE Service Center
Místo vydání
Piscataway
Místo konání akce
Rome
Datum konání akce
11. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—