Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Continually trained life-long classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00351198" target="_blank" >RIV/68407700:21230/22:00351198 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00521-021-06154-9" target="_blank" >https://doi.org/10.1007/s00521-021-06154-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-021-06154-9" target="_blank" >10.1007/s00521-021-06154-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Continually trained life-long classification

  • Popis výsledku v původním jazyce

    Two challenges can be found in a life-long classifier that learns continually: the concept drift, when the probability distribution of data is changing in time, and catastrophic forgetting when the earlier learned knowledge is lost. There are many proposed solutions to each challenge, but very little research is done to solve both challenges simultaneously. We show that both the concept drift and catastrophic forgetting are closely related to our proposed description of the life-long continual classification. We describe the process of continual learning as a wrap modification, where a wrap is a manifold that can be trained to cover or uncover a given set of samples. The notion of wraps and their cover/uncover modifiers are theoretical building blocks of a novel general life-long learning scheme, implemented as an ensemble of variational autoencoders. The proposed algorithm is examined on evaluation scenarios for continual learning and compared to state-of-the-art algorithms demonstrating the robustness to catastrophic forgetting and adaptability to concept drift but also showing the new challenges of the life-long classification.

  • Název v anglickém jazyce

    Continually trained life-long classification

  • Popis výsledku anglicky

    Two challenges can be found in a life-long classifier that learns continually: the concept drift, when the probability distribution of data is changing in time, and catastrophic forgetting when the earlier learned knowledge is lost. There are many proposed solutions to each challenge, but very little research is done to solve both challenges simultaneously. We show that both the concept drift and catastrophic forgetting are closely related to our proposed description of the life-long continual classification. We describe the process of continual learning as a wrap modification, where a wrap is a manifold that can be trained to cover or uncover a given set of samples. The notion of wraps and their cover/uncover modifiers are theoretical building blocks of a novel general life-long learning scheme, implemented as an ensemble of variational autoencoders. The proposed algorithm is examined on evaluation scenarios for continual learning and compared to state-of-the-art algorithms demonstrating the robustness to catastrophic forgetting and adaptability to concept drift but also showing the new challenges of the life-long classification.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18858S" target="_blank" >GA18-18858S: Metody kontinuálního učení řízení pohybu vícenohých kráčejích robotů v úlohách autonomního sběru dat</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    135-152

  • Kód UT WoS článku

    000659406300001

  • EID výsledku v databázi Scopus

    2-s2.0-85107481929