Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

D3S - A discriminative single shot segmentation tracker

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346885" target="_blank" >RIV/68407700:21230/20:00346885 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/CVPR42600.2020.00716" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.00716</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR42600.2020.00716" target="_blank" >10.1109/CVPR42600.2020.00716</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    D3S - A discriminative single shot segmentation tracker

  • Popis výsledku v původním jazyce

    Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S, which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve high robustness and online target segmentation. Without per-dataset finetuning and trained only for segmentation as the primary output, D3S outperforms all trackers on VOT2016, VOT2018 and GOT-10k benchmarks and performs close to the state-of-the-art trackers on the TrackingNet. D3S outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms, while running an order of magnitude faster, close to real-time.

  • Název v anglickém jazyce

    D3S - A discriminative single shot segmentation tracker

  • Popis výsledku anglicky

    Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S, which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve high robustness and online target segmentation. Without per-dataset finetuning and trained only for segmentation as the primary output, D3S outperforms all trackers on VOT2016, VOT2018 and GOT-10k benchmarks and performs close to the state-of-the-art trackers on the TrackingNet. D3S outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms, while running an order of magnitude faster, close to real-time.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-05360S" target="_blank" >GA18-05360S: Řešení inverzních problémů vznikajících při analýze rychle se pohybujících objektů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-7281-7168-5

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Počet stran výsledku

    10

  • Strana od-do

    7131-7140

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    USA

  • Místo konání akce

    Seattle

  • Datum konání akce

    13. 6. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000620679507041