D3S - A discriminative single shot segmentation tracker
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346885" target="_blank" >RIV/68407700:21230/20:00346885 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/CVPR42600.2020.00716" target="_blank" >https://doi.org/10.1109/CVPR42600.2020.00716</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR42600.2020.00716" target="_blank" >10.1109/CVPR42600.2020.00716</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
D3S - A discriminative single shot segmentation tracker
Popis výsledku v původním jazyce
Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S, which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve high robustness and online target segmentation. Without per-dataset finetuning and trained only for segmentation as the primary output, D3S outperforms all trackers on VOT2016, VOT2018 and GOT-10k benchmarks and performs close to the state-of-the-art trackers on the TrackingNet. D3S outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms, while running an order of magnitude faster, close to real-time.
Název v anglickém jazyce
D3S - A discriminative single shot segmentation tracker
Popis výsledku anglicky
Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S, which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve high robustness and online target segmentation. Without per-dataset finetuning and trained only for segmentation as the primary output, D3S outperforms all trackers on VOT2016, VOT2018 and GOT-10k benchmarks and performs close to the state-of-the-art trackers on the TrackingNet. D3S outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms, while running an order of magnitude faster, close to real-time.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05360S" target="_blank" >GA18-05360S: Řešení inverzních problémů vznikajících při analýze rychle se pohybujících objektů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
ISBN
978-1-7281-7168-5
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
7131-7140
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Seattle
Datum konání akce
13. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000620679507041