A Discriminative Single-Shot Segmentation Network for Visual Object Tracking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362940" target="_blank" >RIV/68407700:21230/22:00362940 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TPAMI.2021.3137933" target="_blank" >https://doi.org/10.1109/TPAMI.2021.3137933</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2021.3137933" target="_blank" >10.1109/TPAMI.2021.3137933</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Discriminative Single-Shot Segmentation Network for Visual Object Tracking
Popis výsledku v původním jazyce
Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S(2), which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve robust online target segmentation. The overall tracking reliability is further increased by decoupling the object and feature scale estimation. Without per-dataset finetuning, and trained only for segmentation as the primary output, D3S(2) outperforms all published trackers on the recent short-term tracking benchmark VOT2020 and performs very close to the state-of-the-art trackers on the GOT-10k, TrackingNet, OTB100 and LaSoT. D3S(2) outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms.
Název v anglickém jazyce
A Discriminative Single-Shot Segmentation Network for Visual Object Tracking
Popis výsledku anglicky
Template-based discriminative trackers are currently the dominant tracking paradigm due to their robustness, but are restricted to bounding box tracking and a limited range of transformation models, which reduces their localization accuracy. We propose a discriminative single-shot segmentation tracker - D3S(2), which narrows the gap between visual object tracking and video object segmentation. A single-shot network applies two target models with complementary geometric properties, one invariant to a broad range of transformations, including non-rigid deformations, the other assuming a rigid object to simultaneously achieve robust online target segmentation. The overall tracking reliability is further increased by decoupling the object and feature scale estimation. Without per-dataset finetuning, and trained only for segmentation as the primary output, D3S(2) outperforms all published trackers on the recent short-term tracking benchmark VOT2020 and performs very close to the state-of-the-art trackers on the GOT-10k, TrackingNet, OTB100 and LaSoT. D3S(2) outperforms the leading segmentation tracker SiamMask on video object segmentation benchmarks and performs on par with top video object segmentation algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
1939-3539
Svazek periodika
44
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
9742-9755
Kód UT WoS článku
000880661400085
EID výsledku v databázi Scopus
2-s2.0-85122070980