Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Power Units

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347207" target="_blank" >RIV/68407700:21230/20:00347207 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://proceedings.neurips.cc/paper/2020/hash/48e59000d7dfcf6c1d96ce4a603ed738-Abstract.html" target="_blank" >https://proceedings.neurips.cc/paper/2020/hash/48e59000d7dfcf6c1d96ce4a603ed738-Abstract.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Power Units

  • Popis výsledku v původním jazyce

    Conventional Neural Networks can approximate simple arithmetic operations, but fail to generalize beyond the range of numbers that were seen during training. Neural Arithmetic Units aim to overcome this difficulty, but current arithmetic units are either limited to operate on positive numbers or can only represent a subset of arithmetic operations. We introduce the Neural Power Unit (NPU) that operates on the full domain of real numbers and is capable of learning arbitrary power functions in a single layer. The NPU thus fixes the shortcomings of existing arithmetic units and extends their expressivity. We achieve this by using complex arithmetic without requiring a conversion of the network to complex numbers. A simplification of the unit to the RealNPU yields a highly transparent model. We show that the NPUs outperform their competitors in terms of accuracy and sparsity on artificial arithmetic datasets, and that the RealNPU can discover the governing equations of a dynamical system only from data.

  • Název v anglickém jazyce

    Neural Power Units

  • Popis výsledku anglicky

    Conventional Neural Networks can approximate simple arithmetic operations, but fail to generalize beyond the range of numbers that were seen during training. Neural Arithmetic Units aim to overcome this difficulty, but current arithmetic units are either limited to operate on positive numbers or can only represent a subset of arithmetic operations. We introduce the Neural Power Unit (NPU) that operates on the full domain of real numbers and is capable of learning arbitrary power functions in a single layer. The NPU thus fixes the shortcomings of existing arithmetic units and extends their expressivity. We achieve this by using complex arithmetic without requiring a conversion of the network to complex numbers. A simplification of the unit to the RealNPU yields a highly transparent model. We show that the NPUs outperform their competitors in terms of accuracy and sparsity on artificial arithmetic datasets, and that the RealNPU can discover the governing equations of a dynamical system only from data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

  • ISBN

  • ISSN

    1049-5258

  • e-ISSN

    1049-5258

  • Počet stran výsledku

    11

  • Strana od-do

  • Název nakladatele

    Neural Information Processing Society

  • Místo vydání

    Montreal

  • Místo konání akce

    Vancouver

  • Datum konání akce

    6. 12. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku