Approximate arithmetic for modern neural networks and FPGAs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358459" target="_blank" >RIV/68407700:21240/22:00358459 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/MECO55406.2022.9797141" target="_blank" >https://doi.org/10.1109/MECO55406.2022.9797141</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MECO55406.2022.9797141" target="_blank" >10.1109/MECO55406.2022.9797141</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximate arithmetic for modern neural networks and FPGAs
Popis výsledku v původním jazyce
Approximate arithmetic is a very important approach for implementing neural networks in embedded hardware. The requirements of real-time applications with respect to the size of deep neural networks force designers to simplify the neural processing elements. Not only the reduction of precision of model parameters to a few bits, but also the use of approximate arithmetic increases computational power and saves on-chip resources beyond exact computation. Since it was shown that linearly approximated functions are suitable for implementing neural networks in hardware, FPGAs have improved. So we decided to re-implement the processing element on a modern FPGA and to present implementation results regarding speed and resource consumption. A neural processing element based on linearly approximated functions was implemented in Vivado and tested on an xc7 FPGA. The results show that the architecture saves significant resources and a clock frequency above 100 MHz can be achieved in pipelined design.
Název v anglickém jazyce
Approximate arithmetic for modern neural networks and FPGAs
Popis výsledku anglicky
Approximate arithmetic is a very important approach for implementing neural networks in embedded hardware. The requirements of real-time applications with respect to the size of deep neural networks force designers to simplify the neural processing elements. Not only the reduction of precision of model parameters to a few bits, but also the use of approximate arithmetic increases computational power and saves on-chip resources beyond exact computation. Since it was shown that linearly approximated functions are suitable for implementing neural networks in hardware, FPGAs have improved. So we decided to re-implement the processing element on a modern FPGA and to present implementation results regarding speed and resource consumption. A neural processing element based on linearly approximated functions was implemented in Vivado and tested on an xc7 FPGA. The results show that the architecture saves significant resources and a clock frequency above 100 MHz can be achieved in pipelined design.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 11th Mediterranean Conference on Embedded Computing (MECO 2022)
ISBN
978-1-6654-6828-2
ISSN
2377-5475
e-ISSN
—
Počet stran výsledku
4
Strana od-do
351-354
Název nakladatele
Institute of Electrical and Electronics Engineers, Inc.
Místo vydání
—
Místo konání akce
Budva
Datum konání akce
7. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000855969800072