Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rebalancing in Vehicle-sharing Systems with Service Availability Guarantees

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347445" target="_blank" >RIV/68407700:21230/20:00347445 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.23919/ACC45564.2020.9147303" target="_blank" >https://doi.org/10.23919/ACC45564.2020.9147303</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/ACC45564.2020.9147303" target="_blank" >10.23919/ACC45564.2020.9147303</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rebalancing in Vehicle-sharing Systems with Service Availability Guarantees

  • Popis výsledku v původním jazyce

    A station-based vehicle sharing system consists of a fleet of vehicles (usually bikes or cars) that can be rented at one station and returned at another station. We study how to achieve guaranteed service availability in such systems. Specifically, we are interested in determining a) the fleet size and b) a vehicle rebalancing policy that guarantees that a) every customer will find an available vehicle at the origin station and b) the customer will find a free parking spot at the destination station. We model the evolution of the number of vehicles at each station as a stochastic process. The proposed rebalancing strategy iteratively solves a chance-constrained optimization problem to find a rebalancing schedule that ensures that no service failures will occur in the future with a given level of confidence. We show that such a chance-constrained optimization problem can be converted into a linear program and efficiently solved. As a case study, we apply the proposed method to control a simulated bike-sharing system in Boston using real-world historical demand. Our results demonstrate that our method can indeed ensure the desired level of service availability even when the demand does not fully conform to the assumptions of the underlying stochastic model. Moreover, compared with a state-of-the art rebalancing method, the proposed method can achieve nearly full service availability while making less than half of the rebalancing trips.

  • Název v anglickém jazyce

    Rebalancing in Vehicle-sharing Systems with Service Availability Guarantees

  • Popis výsledku anglicky

    A station-based vehicle sharing system consists of a fleet of vehicles (usually bikes or cars) that can be rented at one station and returned at another station. We study how to achieve guaranteed service availability in such systems. Specifically, we are interested in determining a) the fleet size and b) a vehicle rebalancing policy that guarantees that a) every customer will find an available vehicle at the origin station and b) the customer will find a free parking spot at the destination station. We model the evolution of the number of vehicles at each station as a stochastic process. The proposed rebalancing strategy iteratively solves a chance-constrained optimization problem to find a rebalancing schedule that ensures that no service failures will occur in the future with a given level of confidence. We show that such a chance-constrained optimization problem can be converted into a linear program and efficiently solved. As a case study, we apply the proposed method to control a simulated bike-sharing system in Boston using real-world historical demand. Our results demonstrate that our method can indeed ensure the desired level of service availability even when the demand does not fully conform to the assumptions of the underlying stochastic model. Moreover, compared with a state-of-the art rebalancing method, the proposed method can achieve nearly full service availability while making less than half of the rebalancing trips.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 2020 American Control Conference

  • ISBN

    978-1-5386-8266-1

  • ISSN

    0743-1619

  • e-ISSN

    2378-5861

  • Počet stran výsledku

    8

  • Strana od-do

    2635-2642

  • Název nakladatele

    IEEE

  • Místo vydání

    Anchorage, Alaska

  • Místo konání akce

    Denver

  • Datum konání akce

    1. 7. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000618079802097