Rebalancing in Vehicle-sharing Systems with Service Availability Guarantees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347445" target="_blank" >RIV/68407700:21230/20:00347445 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23919/ACC45564.2020.9147303" target="_blank" >https://doi.org/10.23919/ACC45564.2020.9147303</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/ACC45564.2020.9147303" target="_blank" >10.23919/ACC45564.2020.9147303</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rebalancing in Vehicle-sharing Systems with Service Availability Guarantees
Popis výsledku v původním jazyce
A station-based vehicle sharing system consists of a fleet of vehicles (usually bikes or cars) that can be rented at one station and returned at another station. We study how to achieve guaranteed service availability in such systems. Specifically, we are interested in determining a) the fleet size and b) a vehicle rebalancing policy that guarantees that a) every customer will find an available vehicle at the origin station and b) the customer will find a free parking spot at the destination station. We model the evolution of the number of vehicles at each station as a stochastic process. The proposed rebalancing strategy iteratively solves a chance-constrained optimization problem to find a rebalancing schedule that ensures that no service failures will occur in the future with a given level of confidence. We show that such a chance-constrained optimization problem can be converted into a linear program and efficiently solved. As a case study, we apply the proposed method to control a simulated bike-sharing system in Boston using real-world historical demand. Our results demonstrate that our method can indeed ensure the desired level of service availability even when the demand does not fully conform to the assumptions of the underlying stochastic model. Moreover, compared with a state-of-the art rebalancing method, the proposed method can achieve nearly full service availability while making less than half of the rebalancing trips.
Název v anglickém jazyce
Rebalancing in Vehicle-sharing Systems with Service Availability Guarantees
Popis výsledku anglicky
A station-based vehicle sharing system consists of a fleet of vehicles (usually bikes or cars) that can be rented at one station and returned at another station. We study how to achieve guaranteed service availability in such systems. Specifically, we are interested in determining a) the fleet size and b) a vehicle rebalancing policy that guarantees that a) every customer will find an available vehicle at the origin station and b) the customer will find a free parking spot at the destination station. We model the evolution of the number of vehicles at each station as a stochastic process. The proposed rebalancing strategy iteratively solves a chance-constrained optimization problem to find a rebalancing schedule that ensures that no service failures will occur in the future with a given level of confidence. We show that such a chance-constrained optimization problem can be converted into a linear program and efficiently solved. As a case study, we apply the proposed method to control a simulated bike-sharing system in Boston using real-world historical demand. Our results demonstrate that our method can indeed ensure the desired level of service availability even when the demand does not fully conform to the assumptions of the underlying stochastic model. Moreover, compared with a state-of-the art rebalancing method, the proposed method can achieve nearly full service availability while making less than half of the rebalancing trips.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2020 American Control Conference
ISBN
978-1-5386-8266-1
ISSN
0743-1619
e-ISSN
2378-5861
Počet stran výsledku
8
Strana od-do
2635-2642
Název nakladatele
IEEE
Místo vydání
Anchorage, Alaska
Místo konání akce
Denver
Datum konání akce
1. 7. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000618079802097